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A B S T R A C T   

In this study, we report the synthesis and characterization of a highly manageable polyacrylic film material for 
enzyme immobilization, using β-galactosidase (β-gal) as a model enzyme. The material is based on commercially 
available monomers and achieves efficient immobilization of β-gal through the formation of azo linkages be
tween amino styrene groups in the polyacrylic material and the enzyme. The immobilized enzyme demonstrates 
superior performance compared to free enzyme in lactose hydrolysis of UHT milk, achieving lactose concen
trations below 0.1% (<1 mg/mL), indicating its potential for lactose hydrolysis in dairy products. The film- 
shaped material is designed for easy submersion and removal, similar to a smart card, and offers reusability, 
with the ability to be reused at least 10 times without loss of enzymatic activity. Characterization of the 
immobilized enzyme on the polymeric material was performed using various techniques, including scanning 
electron microscopy (SEM), Fourier-transform infrared spectroscopy (FT-IR), and Raman spectroscopy. Protein 
release studies confirmed the stability of the immobilized enzyme during prolonged incubation in aqueous so
lution without significant enzyme leakage. Overall, the polyacrylic film material demonstrates promise as a 
simple and efficient approach for enzyme immobilization, with potential applications in various industries, 
including the food industry.   

1. Introduction 

Over the past decade, lactose-free products have gained a foothold in 
the food market, and a wide variety of lactose-free products are 
currently manufactured, including milk, yogurts, cheeses, creams, 
margarines, butters, and ice creams, among others [1–3]. To be 
considered “lactose-free,” a product’s glucose and galactose disaccha
ride concentration must be below a certain threshold, as determined, for 
instance, by the European Food Safety Authority (EFSA) [4]. In indus
trial settings, lactose-free products are manufactured by adding neutral 
lactases (β-galactosidases) as an additive or as a processing aid [3], 
which irreversibly wastes the enzyme and increases production costs. As 
a result, immobilizing lactases on polymeric supports has become an 
area of growing interest, particularly in biotechnology and food science, 
as this technique allows reusability and often enhances enzyme thermo- 
stability and pH tolerance [5,6]. 

Numerous studies have been published on the immobilization of 
β-galactosidase (β -gal) onto a wide variety of supports, which reflects 

the great interest associated with this type of materials [7]. Some of the 
most commonly used supports include pectin-based hydrogels [6], 
arabic gum-based hydrogels [8], chitosan [9,10], sodium alginate gels 
[5,11], carbon nanotube tubular micromotors [12], ion exchange resin 
Duolite A568 [13], polycaprolactone and silk fibroin based nanofiber 
[14], natural silk fibers grafted with polyacrylonitrile [15], nanosilver 
reduced graphene oxide nanocomposites [16], polydopamine coated 
magnetic particles [17,18], epoxy resins [19,20], aminated PVC [21], 
polystyrene [22,23], or modified cellulose acetate [24]. However, the 
reusability of many of these materials has not been demonstrated, and in 
those that have, enzymatic activity decreases after the first use, dis
appearing after several cycles of washing/use [6]. 

Likewise, various comparative studies have been carried out between 
free enzymes and immobilized enzymes. Putting aside the fact that when 
using free enzymes, they cannot be reused, the truth is that better results 
are obtained in terms of lactose hydrolysis compared to immobilized 
enzymes [5]. 

Although numerous immobilized enzyme hydrolysis systems have 
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been investigated, only a few have been scaled up, and even fewer have 
been applied at an industrial or semi-industrial level. The most notable 
cases include (1) Centrale del Latte in Milan (Italy), which used SNAM 
Progetti technology by immobilizing the enzyme in cellulose triacetate 
fibers; (2) Drouin Cooperative Butter Factory in Australia, which relied 
on technology developed by Sumitomo Chemical (Japan) to immobilize 
the enzyme in phenol-formaldehyde resin; and (3) Snow Brand in 
Australia, which developed a rotating column reactor that could be used 
as a stirred tank reactor and packed bed reactor [25]. However, the main 
disadvantage of all these methods is the loss of efficiency in lactose 
hydrolysis after several cycles of use/washing, as in many cases, it does 
not exceed 70–80% of lactose hydrolyzed. In addition, this reuse is often 
made difficult by the shape/format of the supports, involving filtration 
processes, etc. 

In this work, we describe a highly manageable polyacrylic film ma
terial that can be easily submerged and removed like a smart card, and is 
based on commercially available monomers. Immobilization of β -gal 
enzyme was achieved through the formation of azo linkages between 
amino styrene groups present in the polyacrylic material and the 
enzyme. The novelty of this material lies primarily in the possibility of 
reusing it at least 10 times without losing any enzymatic activity, simply 
by dipping the film in the milk, and surpassing the free enzyme’s effi
ciency in the same experimental conditions. The study (summarized in 
Fig. 1) was concluded with a proof-of-concept experiment, in which 
lactose hydrolysis was performed in UHT milk to achieve lactose-free 
products, i.e., lactose concentrations below 0.1% (<1 mg/mL). The 
experiments were conducted at three different temperatures (4, 25, and 
55 ◦C), and the results showed that the immobilized enzyme out
performed the free enzyme in terms of hydrolysis efficiency. These 
findings demonstrate the material’s potential for lactose hydrolysis in 
dairy products, even by the end-user, as the procedure is as simple as 
“dip-wait-remove”. 

2. Experimental 

2.1. Materials 

All materials and solvents were commercially available and used as 
received unless otherwise indicated. The following materials and sol
vents were used: 1-vinyl-2-pyrrolidone (VP) (Acros Organic, 99%), 
methylmethacrylate (MMA) (Merck, 99%) 4-aminostyrene (SNH2) (TCI, 
98%), methanol (VWR-Prolabo, 99.9%), distilled water, hydrochloric 
acid (VWR, 37%) dimethylsulfoxide‑d6 (VWR, 99.8%), citric acid (VWR, 
≥99.5%), di-sodium hydrogen phosphate anhydrous (VWR, 99%), so
dium carbonate (Sigma-Aldrich, 99.9%), sodium azide (Alfa Aesar, 
99%), sodium nitrite (Alfa Aesar, 98%), 2-nitrophenyl β-D-galactopyr
anoside (ONPG) (TCI, >98%), 2-nitrophenol (ONP) (Acros Organics, 
99%), β-galactosidase from Aspergillus oryzae (Biolactase F Conc, BIO
CON, 45 units.mg− 1) (BIO- β-gal) [26], UHT cow milk (Carrefour). Azo- 
bis-isobutyronitrile (AIBN, Aldrich, 98%) was recrystallized twice from 
methanol. The kit for lactose determination “K-LOLAC” was provided by 
Megazyme [27]. 

2.2. Instrumentation and methods 

The polymers thermal characterization was performed by thermog
ravimetric analysis (Q50 TGA analyzer, TA Instruments, New Castle, DE, 
USA) with 10–15 mg of sample under synthetic air and nitrogen atmo
sphere at 10 ◦C⋅min− 1. 

Infrared spectra (FTIR) were recorded with an infrared spectrometer 
(FT/IR-4200, Jasco, Tokyo, Japan) with an ATR-PRO410-S single 
reflection accessory. RAMAN spectra were recorded with a confocal 
AFM-RAMAN model Alpha300R – Alpha300A AFM from WITec, using a 
laser radiation of 785 nm, at magnifications of 100x, 12 mW, 10 accu
mulations. All spectra were taken at room temperature. 

Enzymatic activity assays were performed using a Synergy HT 
microplate reader (BioTek®, Winooski, Vermont, USA), recording 

Fig. 1. Table of contents of the study.  
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absorbance data at 420 nm. Digital photographs were taken with a 
smartphone (Mi 9, Xiaomi, Pekín, China). 

Field Emission Scanning electron microscopy (FESEM) was carried 
out using a model GemminiSEM560, ZEISS. Films were dried, freeze 
fractured, and gold coated in vacuum to ensure the electrical conduc
tivity of the films. 

The weight percentage of water taken up by the films upon soaking 
in pure water at 20 ◦C until reaching equilibrium (water-swelling per
centage, WSP) was obtained from the weight of a dry sample film (ωd) 
and its water-swelled weight (ωs) using the following expression: WSP 
= 100 × [(ωs × ωd)/ωd]. 

The protein and fat content of milk was determined following com
mon procedures depicted in the literature, as Bradford and Gerber 
methods, respectively [28,29]. 

2.3. Design of β -gal containing acrylic polymers (Fβ -gal-N3) 

From the beginning, we wanted to prepare a manageable material, 
without needing to handle it delicately or storing it in too careful con
ditions. In other words, a material to be used by non-specialized 
personnel in domestic environments, but also in industrial processes 
where there is no scope to slow down the paces of the industry. In terms 
of materials science, and regarding the proposed application, this means 
that the polyacrylic material must contain hydrophobic monomers to 
provide rigidity, hydrophilic monomers to allow use in aqueous media 
(such as milk), and aniline groups containing functional monomers for 
carrying out the immobilization of the enzyme β -gal. 

For this study, we selected VP (hydrophilic monomer), MMA (hy
drophobic monomer), and SNH2 (functional monomer), using ethylene 
glycol dimethacrylate (E) as the crosslinking agent. 

2.4. Synthesis of β -gal containing acrylic polymers (F β -gal-N3) 

Film-shaped polymers were prepared by bulk radical polymerization 
of the commercially available monomers VP (45 mol%), MMA (45 mol 
%), and SNH2 (10 mol%), the polymeric was crosslinked using 0.1 mol% 

of E, following the experimental procedure described below. 
850 mg (7.64 × 10− 3 mol) of VP, 765 mg (7.64 × 10− 3 mol) of MMA, 

202.5 mg (1.70 × 10− 3 mol) of SNH2, 3.4 mg (1.70 × 10− 5 mol) of E 
were mixed. Then, 18.2 mg (1.1 × 10− 4 mol) of AIBN were dissolved and 
the solution of comonomers and initiatior were injected in a mold (90 ×
120 × 0.1 mm, width, length, thickness) comprised between two 
silanized glasses in an oxygen-free atmosphere. The polymerization was 
carried out at 60 ◦C, overnight, and finally, the films (FNH2) were washed 
with water. With the aim of removing unreacted monomers, films were 
washed with water:acetone mixtures ranging from 100:0 to 0:100, and 
finally with mixtures 0:100 to 100:0. This gradual solvent transition is 
performed to avoid breakages associated with sudden changes in the 
material’s WSP. 

After the preparation of FNH2, 3 solid phase reactions were carried 
out: (1) generation of benzene diazonium salts on the amino groups 
provided by the SNH2 monomer (FN2+), (2) immobilization of the 
enzyme β -gal through the formation of diazo bonds (F β -gal), and (3) 
quenching of the leftover benzene diazonium groups with sodium azide 
(F β -gal-N3). The final step is carried out to prevent the highly reactive 
benzene diazonium groups from reacting with other components of the 
milk. The schemes of each material are depicted in Fig. 2. 

The first step, namely, the preparation of FN2+, began with punching 
FNH2 film into 6 mm diameter discs. Then, 10 disks were dipped for 1 h in 
11 mL of an aqueous solution containing 10 mL of distilled water, 1 mL 
of HCl (37%), and 50 mg of sodium nitrite. After that, discs were 
exhaustively washed with distilled water. 

The second step was carried out in an Eppendorf vial, by dipping 1 
disc of FN2+ in 1 mL of the aqueous enzyme solution (25 mg of BIO- β -gal 
per millilitre of distilled water). The vial was stored overnight at room 
temperature without stirring, and finally, discs were washed five times 
with distilled water until no enzyme was detected in the washing water 
by the Bradford method [28]. It is remarkable that the enzyme solution 
was reused up to 6 times without losing immobilization efficiency. The 
enzyme quantities, temperature, and pH were optimized with the aim of 
achieving the highest enzymatic activity possible. 

The third step was also performed in an Eppendorf, by dipping 1 disc 

Fig. 2. Schematic representation of the prepared materials: a) original film with aminostyrene side groups; b) film with benzene diazonium side groups; c) film with 
β-gal covalently anchored through azo bonds to the polymer chain, and with remaining benzene diazonium lateral groups; and d) film with β-gal covalently anchored 
through azo bonds to the polymer chain, and with azidobenzene side groups (enzyme image taken from Wikimedia Commons contributors) [30]. 
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of F β -gal in 1 mL of aqueous sodium azide solution (5 mg/mL, distilled 
water). The vial was left at room temperature 1 h, and without stirring. 
The F β -gal-N3 discs were washed every 10 min five times, and once more 
overnight. 

The complete physicochemical characterization of FNH2, FN2+, F β 
-gal, and F β -gal-N3 can be found in the Supporting Information (SI-Section 
S1, Figure S1). 

2.5. Activity evaluation and protein release study of F β -gal-N3 

Enzymatic activity of F β -gal-N3 films were confirmed using ONPG as 
substrate in a microplate reader with 96-well plates. 6 mm diameter 
discs were placed at the bottom of each well and 80 μL of a cit
rate–phosphate pH 5 buffer (di-Sodium hydrogen phosphate 0.2 M and 
citric acid 0.1 M) and 20 μL of ONPG substrate at a final concentration of 
2.5 mM were added. Samples were incubated for 30 min at 37 ◦C and the 
reaction was stopped by adding 100 μL of sodium carbonate 10% (w/v). 
The absorbance of the supernatant was measured at 420 nm, and the 
enzymatic activity was represented as µmol of ONP/hּ cm2 (more in
formation in SI-Section S2, Fig. S2a).p 

Following the same experimental procedure, different experiments 
were carried out to confirm that the polymeric support was inert, that is, 
that the material without enzyme (FSNH2, FN2+ and FN3) did not show 
activity. In the same way, a film with deposited enzyme (not immobi
lized, without covalent anchorage) was also tested and labeled as FAds, 
which for practical purposes, behaved like a film without enzyme since 
the successive washes after the deposition process eliminated any 
enzyme content, making clear the need to carry out a covalent 
anchorage (more information in SI-Section S2, Fig. S2a). 

Protein release study was carried out with covalently anchored 
enzyme-containing films to verify that the enzyme is not liberated from 
the films in aqueous solution. For that, 10F β -gal-N3 discs (6 mm diam
eter) were incubated for 30 h in citrate–phosphate pH 6.8 buffer (UHT 
milk’s usual pH). 40 µL of samples were taken at different time points 
(30 min, 1, 6, 20 and 30 h), and total protein content was measured 
according to the method of Bradford [28]. 

All assays were carried out in triplicate and blanks were used to 
account for spontaneous breakdown of the substrates (more information 
in SI-Section S2, Fig. S2b). 

2.6. Design of the proof of concept 

The proof of concept was designed as a comparative test when hy
drolyzing commercial milk. Our main objective was to propose a real
istic alternative to the current lactose-free milk production method, 
which is based on adding β -galactosidase directly to the milk (Method 
A). This means that the enzyme is not recovered, and given the boom in 
lactose-free products in recent years, we believe that a manageable and 
reusable film-shaped material with low production costs can be postu
lated as a viable alternative (Method B). 

2.6.1. Calibration. Equivalence test 
First of all, it should be pointed out that an attempt was made to 

determine the amount of the immobilized enzyme by different methods 
(Bradford [28] and Bicinchoninic acid assay [31]), but none of them was 
satisfactory due to interference of the different methods with the poly
meric material. So, since it is a comparative study (“free enzyme” vs F β 
-gal-N3), an experiment was carried out to establish a functional equiva
lence between the mg of free enzyme used in Method A, and the F β -gal- 

N3 discs used in Method B. To do this, different amounts of BIO- β -gal 
(0.5, 1, 2.5, and 5 mg) were added to 1 mL of milk. The remaining 
lactose in each experiment was determined after incubation at 90 rpm 
for 1 h at 25 ◦C, using the kit for lactose determination “K-LOLAC” 
following the manufacturer instructions. The calibration curve obtained 
is shown in SI-Section S3 (Figure S3). 

Then, the experiment was repeated using 10 discs (6 mm diameter) 

of Fβ -gal-N3 that were added to 1 mL of milk, and the system was incu
bated at 90 rpm for 1 h at 25 ◦C. The remaining lactose data was 
introduced in the fitted equation, and the equivalent mg of BIO-β -gal 
was obtained. Thus, 10 discs of Fβ -gal-N3 are equivalent to 830 μg of BIO- 
β -gal (they hydrolyze the same amount of lactose, at a given time and 
temperature). 

2.6.2. Comparison. Hydrolyzing lactose from milk with both methods 
10 discs (6 mm diameter) of F β -gal-N3 were added to 1 mL of milk, 

and vials were stirred in an orbital stirrer at 90 RPM. The remaining 
lactose was determined at different times (0, 1, 6, 20, and 30 h) using the 
kit for lactose determination “K-LOLAC”. The experiment was conducted 
at three different temperatures (4, 25 and 55 ◦C). In the same way, the 
assays were also performed with free enzyme by adding 830 μg of BIO- β 
-gal to 1 mL of milk. 

2.6.3. Storage and reusability 
Our design of the material implies a hypothetical future use in the 

food industry. For this reason, we understand that material reuse is a key 
point in our development since costs are reduced, and the material 
complies with the “circular economy” and “environmentally friendly” 
concepts. Thus, after the first use, the discs were dipped in distilled 
water for 10 min, and the washing process was repeated 5 times as 
depicted in previous works [32]. Then, the films were used again, as 
described in Section 2.6.2. In total, discs were used/washed up to 10 
times. 

After the fourth use and washing, discs were stored in the conditions 
that have turned out to be the most optimal (in the swelled state, packed 
in zip bags, and at 4 ◦C), and the reusability study was resumed one 
month later. This proof of concept has been designed to assess the hy
drolytic functionality of the material after 10 cycles of use and a storage 
period. 

3. Results and discussion 

3.1. Physicochemical characterization of Fβ -gal-N3 

The immobilization of β -gal on the polymeric material was charac
terized by several techniques, being the SEM images shown in Fig. 3 the 
most visual one. The images from FNH2, and FN2+ materials revealed 
dense structures. Fig. 3b shows folds due to the high WSP of the FN2+
sample. Unlike FNH2, FN2+ is a polymer that contains 10 mol% of a salt- 
type co-monomer, which could be understood as a polyelectrolyte with a 
high water affinity. In fact, FNH2′s WSP is 30 ± 1 %, while FN2+’s is 1,526 
± 71 %. Our interpretation is that the conditions of the SEM analysis 
(ultra high vacuum) abruptly eliminate the water within the polymeric 
structure, and wrinkle the material. 

Regarding Fβ -gal, and Fβ-gal-N3, Fig. 3c and 3d show a rough surface 
due to enzyme immobilization. Similarly, the cross-section of the ma
terials was also analyzed, but no enzyme was found. That is, immobi
lization occurs only on the surface, which makes sense due to the size of 
β-gal (464 KDa), and the dense structures observed before immobiliza
tion. The WSP of Fβ-gal and Fβ-gal-N3 is 516 ± 26 % and 139 ± 4 %, 
respectively, since after the immobilization process, there are still active 
sites (benzene diazonium salt groups) that provide hydrophilicity, 
which disappear after the reaction of active sites with sodium azide. 
Therefore, folds can be seen in Fig. 3c (still high WSP) but not in Fig. 3d. 

The presence of enzyme on the surface of the polymeric material was 
also corroborated by FT-IR and RAMAN, as shown in Fig. 4 and SI- 
Section S1 (Figure S1), respectively. 

Materials Fβ-gal and Fβ-gal-N3 present a wide band at 3300 cm− 1 due to 
the N–H vibration band corresponding to the amide bonds of the 
enzyme. This band is also present in FNH2, and FN2+ materials, but much 
less intense. In the first case, the two bands are attributed to the asym
metric and symmetric stretching of amine groups (only 10 mol%), while 
in the second case, the band is unrelated to the chemical structure of the 
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material but rather to the moisture it absorbs. In fact, the band is a result 
of water presence in the polymeric material, stemming from its high 
hydrophilicity. The spectra of the two materials without enzyme (FNH2, 
and FN2+) present two vibration bands of C––O at 1721 cm− 1 and 1674 

cm− 1, corresponding to MMA and VP, respectively. On the other hand, 
the materials with enzyme (Fβ-gal and Fβ-gal-N3) present one extra νC=O 
band, at 1647 cm− 1, due to the enzymés peptidic bonds. It is also 
noteworthy the presence of the νN=N band at 2100 cm− 1 only in FN2+ and 

Fig. 3. SEM images of the developed material in the different production stages: FNH2, FN2+, Fβ-gal, and Fβ-gal-N3. In the upper left corner, the materials‘ real images 
(photographs) are shown, visually denoting the WSP and the size differences. 

Fig. 4. Characterization of polymeric films FNH2, FN2+, Fβ-gal, and Fβ-gal-N3 by FTIR.  
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Fβ-gal-N3, due to benzene diazonium salt and azide groups, respectively. 

3.2. Evaluation of β-galactosidase activity using the acrylic polymer Fβ-gal- 

N3 

The immobilization of the enzyme in the polymeric material does not 
imply that it has activity. Therefore, in the first stage of validation of the 
immobilization process, several experiments were conducted. First, we 
confirmed the β-galactosidase activity of Fβ-gal-N3 disc using ONPG as 
substrate (SI-Section S2, Fig. S2a), verifying that only the film with the 
enzyme covalently bound (Fβ-gal-N3) presents enzyme activity. 

As these materials are intended for use in the hydrolysis of lactose in 
milk samples over long periods of time, a protein release study was 
carried out to validate that the enzyme is not released from the support 
after long periods in aqueous solution. No protein released to the me
dium was detected during the 30 h of incubation of the Fβ-gal-N3 discs in 
citrate-phosphate pH 6.8 buffer (SI-Section S2, Fig. S2b), confirming 
strong binding of the enzyme to the polymeric matrix. 

Furthermore, the Km values for the free and immobilized enzyme 
were determined (SI-Section S2), and showed no significant differences 
suggesting that enzyme immobilization did not affect the affinity of the 
enzyme for the substrate. 

3.3. Proof of concept 

The recommended storage temperature for milk is 4 ◦C, so it was one 
of the temperatures chosen for the study and the most realistic one when 
considering everyday use. However, two additional temperatures were 
included to provide a comprehensive characterization of the material. 
On the one hand, 25 ◦C was selected as the temperature under normal 
conditions. On the other hand, the highest temperature was chosen as 
the optimal working temperature for the enzyme as indicated by the 
manufacturer (optimal conditions: 55 ◦C and pH = 5) [26]. 

The results of the experiments using Fβ-gal-N3 were better than using 
free enzyme in terms of hydrolyzed lactose (or remaining lactose), 
regardless of the temperature (4, 25 and 55 ◦C). As shown in Fig. 5a, the 
dashed curves corresponding to the free enzyme are, in all cases, above 
solid curves corresponding to Fβ-gal-N3. European Food Safety Authority 
(EFSA) established that the lactose concentration must be below 0.1 g 
per 100 mL for milk to be considered “lactose-free” [4]. Using Fβ-gal-N3, 
that objective is met after 20 h at 25 ◦C, and after 6 h at 55 ◦C. When the 

experiment was carried out at 4 ◦C, a final lactose concentration of 2.5 
mg/mL was achieved after 30 h, insufficient to be considered “lactose- 
free milk”, but low enough to be considered “low lactose milk” [4], 
which gives rise to future improvements of the material to achieve the 
objective of lactose concentration <0.1 g per 100 mL, working under 
refrigerated conditions. 

This experiment was also used to verify the nutritional content of 
milk as described by other authors [14]. The milk was analyzed before 
and after the hydrolysis process with Fβ-gal-N3 carried out at 4 ◦C for 30 h, 
and it was found that there was no variation in either protein content or 
fat content (more information in SI-Section S4). 

In addition, as shown in Fig. 5b, the discs were washed/reused 4 
times at 25 ◦C, then stored for 1 month in a zip bag, and finally reused/ 
washed another 6 times at 25 ◦C, maintaining the same enzymatic ac
tivity throughout the process. This point is key to calculating the ma
terial’s effective costs since although the initial material costs are low, 
they are reduced even more considering materialś reusability (reusable 
at least 10 times), and the enzyme containing solutiońs reusability 
(reusable at least 6 times). In this way, the manufacturing costs for 1 g of 
Fβ-gal-N3 are estimated in 0.7 euros (1 g of material is equivalent to 400 
discs). 

3.4. Comparison with other studies 

Table 1 summarizes the most relevant papers in the field in recent 
years, in terms of type of immobilization (covalent/noncovalent), source 
of the enzyme, whether it has been tested under real conditions (namely, 
in milk), and whether it is reusable. 

Some of the works expose materials with many reuse cycles, but they 
have not been tested in milk, therefore, it cannot be ensured that other 
components of the food matrix interfere in the lactose hydrolysis effi
ciency. Other analyzed materials have been tested in milk, but the ef
ficiency of lactose hydrolyzation in the best case is 82%, and only with 2 
use/wash cycles. On the other hand, our material hydrolyzes > 99% of 
lactose after 10 cycles of use/washing in milk, so we consider it a great 
contribution to the field. 

4. Conclusions 

In conclusion, we have developed a polyacrylic film material for 
enzyme immobilization, exemplified by the successful immobilization of 

Fig. 5. Lactose hydrolysis tests carried out with 1 mL of UHT milk, by adding 830 μg of BIO-β-gal (dashed lines), or with 10 Fβ-gal-N3 discs (solid lines). a) The graph 
represents the remaining lactose using both BIO-β-gal and Fβ-gal-N3 discs (inset), and was quantified with the “K-LOLAC” kit (Megazyme) at different times (0, 1, 6, 20 
and 30 h) and different temperatures (4, 25 and 55 ◦C). b) The experiments were carried out at 25 ◦C, and the hydrolyzed lactose (using Fβ-gal-N3 discs) was quantified 
after 30 h with the “K-LOLAC” kit (Megazyme). The films were washed with water and reused ten times following the same experimental procedure, including a one- 
month storage period after cycle 5. Films were stored in the swelled state, packed in zip bags, and at 4 ◦C. 
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β-galactosidase (β-gal) enzyme through the formation of azo linkages. 
The immobilized enzyme exhibits superior efficiency in lactose hydro
lysis in UHT milk compared to the free enzyme, highlighting the 
promising potential of our polyacrylic film material for application in 
dairy products. The material was prepared in a film shape for easy 
submersion and removal, and showed excellent reusability, with the 
ability to reuse it several times without loss of enzymatic activity. 
Notably, this polyacrylic film material holds promise for broader ap
plications beyond lactose hydrolysis in dairy products. The general 
immobilization of enzymes using this material presents potential per
spectives in various areas of biocatalysis and biotechnology. Moreover, 
the potential for tailoring the material properties by modifying the 
monomer composition or incorporating functional groups could offer 
new opportunities for fine-tuning the performance of the immobilized 
enzymes. Additionally, the film shape and reusability of the material 
make it attractive for continuous and batch processes, providing prac
tical advantages in industrial settings. 

5. Open data 

Open Data is available at https://riubu.ubu.es/handle/10259/5684 
(https://doi.org/10.36443/10259/7647). 
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Appendix A. Supplementary data 

Characterization of polymeric films FNH2, FN2+, Fβ-gal, and Fβ-gal-N3 by 
RAMAN and TGA; calibration curve of the equivalence test; biochemical 
characterization of Fβ-gal-N3; determination of the nutritional content of 
milk. Authors partially generated the graphical abstract with DALL-E, 
OpenAI’s large-scale image-generation model from natural language 
descriptions. Upon generating part of the image (the white surface with 
small balls), the author reviewed, edited, and revised the final image to 
their own liking and takes ultimate responsibility for its content. Sup
plementary data to this article can be found online at https://doi.org/10 
.1016/j.eurpolymj.2023.112495. 

Table 1 
Figures of merit: a comparative table of some of the most relevant papers in the field.  

Support material Immobilization 
(Covalent/Noncovalent) 

Enzyme source Tested in 
milk(Y/N) 

Cycles 
of 
use/ 
wash 

Relative 
activity 
after last 
cycle (%) 

Hydrolyzed 
lactose in 
milk 

Incubation 
Time /Temp 
(◦C) 

Ref. 

Hydrogels Noncovalent Kluyveromyces 
lactis 

Y 6 16 – 20 min/37 [6] 

Sodium alginate Noncovalent Bacillus circulans N 8 60 – 60 min/30 [5] 
Arabic-gum hydrogels Noncovalent Lactomax 

200 s 
N 3 94 – -/37 [8] 

Carbon nanotubes micromotors Covalent Kluyveromyces 
lactis 

Y 2 – 82 20 min/37 [12] 

Ion exchange duolite A568 + GA Covalent Aspergillus 
Oryzae 

N 30 100 – 1 day/RT [13] 

Polycaprolactone and silk-fibroin 
based nanofiber fibroin 

Noncovalent – Y 1 – 41.8 24 h/4 [14] 

Silk fibers Covalent Escherichia coli N 6 92 – 6 h/50 [15] 
Nanosilver reduced graphene 

oxide 
Noncovalent Aspergillus 

oryzae 
N 10 85 – 15 min/37 [16] 

Polymer coated magnetic 
particles 

Covalent Aspergillus 
oryzae 

N 20 58 – 5 min/30 [17] 

Epoxi based polymeric film Covalent Escherichia coli N 12 51 – 15 min/37 [19] 
PVC + GA Covalent Aspergillus 

oryzae 
N 10 98 – 30 min/40 [21] 

Polystyrene nanofiber Noncovalent Kluyveromyces 
lactis 

N 9 30 – 10 min/37 [22] 

Polystyrene microspheres 
attached L-alanine 

Covalent Escherichia coli N 10 73 – 10 min /30 [23] 

Polyacrylic film 
Fβ-gal-N3 

Covalent Aspergillus 
oryzae 

Y 10 >99% >99% 30 h/25 This 
Work  
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