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Abstract: The dynamics of cellular aggregates is driven by the interplay of mechanochemical
processes and cellular activity. Although deterministic models may capture mechanical features,
local chemical fluctuations trigger random cell responses, which determine the overall evolution.
Incorporating stochastic cellular behavior in macroscopic models of biological media is a challenging
task. Herein, we propose hybrid models for bacterial biofilm growth, which couple a two
phase solid/fluid mixture description of mechanical and chemical fields with a dynamic energy
budget-based cellular automata treatment of bacterial activity. Thin film and plate approximations
for the relevant interfaces allow us to obtain numerical solutions exhibiting behaviors observed
in experiments, such as accelerated spread due to water intake from the environment, wrinkle
formation, undulated contour development, and the appearance of inhomogeneous distributions of
differentiated bacteria performing varied tasks.

Keywords: biofilm; cellular activity; solid–fluid mixture; thin film; Von Karman plate; dynamic
energy budget; osmotic spread; wrinkle formation; cell differentiation

1. Introduction

Bacterial biofilms provide basic model environments for analyzing the interaction between
mechanical and cellular aspects of three-dimensional self-organization during development. Biofilms
are formed when bacteria encase themselves in a hydrated layer of self-produced extracellular matrix
(ECM) made of exopolymeric substances (EPS) [1]. This habitat confers them enhanced resistance to
disinfectants, antibiotics, flows, and other mechanical or chemical agents [2].

Research on modeling biofilms has increased steadily during the past few decades resulting in the
understanding of a number of features. Continuous models for uniform cell distributions are useful in
basic culture systems [3]. Individual based models [4,5] and cellular automata [6] may capture variable
thickness, density, and structure. However, current models focus more on deterministic mass transfer
and extracellular structure, than in random cell processes. Interest on fluctuations in intracellular
concentrations, for instance, has arisen due to their significance in phenotypic variability as well as in
gene regulation and stochasticity of gene expression [7,8], with consequences for development and
drug resistance [9].

Recent experiments with Bacillus subtilus biofilms on agar provide a case study in which we can
test models incorporating new aspects. Once bacteria adhere to a surface, they differentiate in response
to local fluctuations created by growth, death, and division processes, to variations in the concentrations
of nutrients, waste, and autoinducers, to cell–cell communication [10]. Some of them become producers
of exopolymeric substances (EPS) and form the extracellular matrix (ECM). EPS production increases
the osmotic pressure in the biofilm, driving water from the agar substrate and accelerating spread [11].
In addition, the matrix confers the biofilm elastic properties. Wrinkles develop as the result of localized
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death in regions of high cell density and compression caused by division and growth [12]. As the
biofilm expands, complex wrinkled patterns develop, see Figure 1. This phenomenon is linked to
gradients created by heterogeneous cellular activity and water migration [13]. Eventually, the wrinkles
form a network of channels transporting water, nutrients, and waste to sustain it [14,15]. Biofilm spread
due to osmosis can be accounted for by two-phase flow models and thin film approximations [11].
Instead, wrinkle formation has been reproduced by means of Von Kármán-type theories [13,16].
Delamination and folding processes are further analyzed in [17] by means of neo-Hookean models.
In [18], a poroelastic approach provides a unified description of liquid transport and elastic deformations
in the biofilm. To incorporate fluctuations in a more natural way, here we propose a mixture model
allowing to distinguish the different phenotypes forming the film.

2mm

Figure 1. Virtual visualization of a biofilm spreading on agar.

Biofilm structure is greatly influenced by environmental conditions. When they grow in flows,
we find bacteria immersed in large lumps of polymer, typically forming fingers and streamers [19]
in the surrounding current. In contrast, biofilms spreading on air–agar interfaces contain small
volume fractions of extracellular matrix [11], producing wrinkled shapes with internal water flow.
This motivates different treatments of the extracellular matrix, see [20,21] for biofilms in flows
and [4,5,11,22] for biofilms on interfaces with air or tissues, for instance. In the latter case, when internal
fluid flow is taken into account, the small fraction of matrix is usually merged in one biomass phase
with the cells [11,22]. Some experimental studies suggest a viscoelastic rheology for biofilms [23,24].
The analysis of the mixture and poroelastic models we consider shows that, depending on the volume
fractions of solid biomass and fluid, the viscosity of the fluid, the Lamé constants of the solid, the
densities, and hydraulic permeability of the fluid/solid system, the characteristic time for variations in
the displacement of the solid, and the characteristic length of the network in the macroscopic scale, the
resulting mixture can be considered as monophasic elastic, monophasic viscoelastic, or truly biphasic
mixture/poroelastic [25,26].

The paper is organized as follows. Section 2 introduces the solid–fluid mixture model. Section 3
discusses ways to incorporate details of cell behavior. We present a cellular automata approach
based on dynamic energy budget descriptions of bacterial metabolism. With the aid of asymptotic
analysis [11,27], we construct numerical solutions displaying behaviors consistent with experimental
observations. Finally, Section 4 discusses our results, the advantages, and limitations of our approach,
as well as future perspectives and possible improvements.

2. Solid-Fluid Mixture Model of a Biofilm Spreading on an Agar/Air Interface

In this section, we adapt bicomponent mixture models of swelling tissues [22,28] to describe the
spread of biofilms of air–agar interfaces, including biomass variations. We consider the biofilm as a
bicomponent mixture of incompressible solid matrix (bacterial cells and polymers) and interstitial fluid
carrying nutrients, waste, and autoinducers, see Figure 2. The biofilm occupies a region Ωb(t), placed
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over an agar substratum Ωa(t) and in contact with air. Large immobilized solutes are considered part
of the extracellular matrix (ECM). Small molecules diffusing rapidly are considered part of the fluid.

(a) (b)

Figure 2. Schematic structure of a biofilm: (a) View of the macroscopic configuration: a biofilm on
an agar–air interface. (b) Microstructure formed by biomass (polymeric mesh and cells) and fluid
containing dissolved substances (nutrients, waste, and autoinducers).

2.1. Mass Balance

Under the equipresence hypothesis of mixtures, each point x in the biofilm can be occupied
simultaneously by both phases. In addition, we assume that no air bubbles or voids form inside the
biofilm. If φs(x, t) denotes the volume fraction of solid and φ f (x, t) the volume fraction of fluid, then
φs + φ f = 1. The standard densities of biological tissues and agar are similar to the density of water
ρ f = 103 kg/m3 (typical relative differences of order 10−2). Thus, we will take the densities of all
constituents and the mixture to be constant and equal to that of water [11]: ρ f = ρs = ρ = ρw. Then,
the balance laws for the fractions of solid biomass φs and fluid φ f are [11,22]

∂φs

∂t
+ div(φsvs) = rs(φs, cn),

∂φ f

∂t
+ div(φ f v f ) = −rs(φs, cn), (1)

where rs(φs, cn) represents biomass production due to nutrient consumption, whereas vs and v f stand
for the velocities of the solid and the fluid components, respectively. Biomass production can be
accounted for through a Monod law rs(φs, cn) = ks

cn
cn+Kn

φs = 1+αm
τ

cn
cn+Kn

φs = g(cn)φs, where cn is
the nutrient concentration, Kn is a constant that marks the onset of starvation, and ks the uptake rate,
which can be approximated by 1+αm

τ , τ being the doubling time for the specific bacteria and αm a factor
representing polymeric matrix production [11].

Adding up Equation (1), we find a conservation law for the growing mixture:

0 = div(φsvs + φ f v f ) = div(v) = div(vs + q), (2)

where v = φsvs + φ f v f is the composite velocity of the mixture and

q = φ f (v f − vs) = φ f w (3)

is the filtration flux, w being the relative velocity.

2.2. Driving Forces

Forces inducing motion are of a different nature: inner stresses, inertial forces, interactive forces,
and external body forces. We discuss here the constitutive relations and fluxes for incompressible
solid–fluid mixtures in the case of infinitesimal deformations and under isothermal conditions [22].
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2.2.1. Stresses in the Solid and the Fluid

When a large number of small pores are present in the biofilm, the stresses in the fluid are

σ f = −φ f pI, (4)

where p is the pore hydrostatic pressure. In the presence of large regions filled with fluid, the overall
fluid shear stresses should be considered too. The stresses in the solid arise from the strain within the
solid and from the interaction with the fluid. Under small deformations, and for an isotropic solid,
we have

σs = σ̂s − φs pI, σ̂s = λsTr(ε(us)) I + 2µs ε(us), εij(u) =
1
2

(∂ui
∂xj

+
∂uj

∂xi

)
, (5)

where us is the displacement vector of the solid biomass; ε(u) the deformation tensor; and λs, µs, the
Lamé constants, related to the Young E and Poisson ν moduli by λ = Eν

(1+ν)(1−2ν)
, µ = E

2(1+ν)
.

2.2.2. Interaction and Inertial Forces

In most biological samples, the velocities v f and vs are small enough for inertial forces to be
negligible: ρsas ≈ ρ f a f ≈ ρa ≈ 0, where as, a f , a represent the solid, fluid, and composite accelerations.
Thus, we will work in a quasi-static deformation regime.

The interaction forces act on the two components. They are opposite in sign and equal in
magnitude, as a result, their combined effect vanishes on the tissue. We consider two kinds: filtration
resistance and concentration gradients in chemical potentials.

The filtration resistance arises from the interaction between fluid and solid particles. Per unit
volume, these forces are φsfs, φ f f f and satisfy φsfs + φ f f f = 0. In the absence of inertial effects and
concentration–viscous couplings f f = −αq, where α(φ f ) is the resistivity matrix and q the filtration
flux. For isotropic elastic solids with isotropic permeability

f f = −
1
kh

q, (6)

where kh = k
µ f

is the hydraulic permeability, k being the permeability of the solid, and µ f the fluid

viscosity. Typically, kh(φ f ) =
φ2

f
ζ , where ζ is a friction parameter often taken to be ζ =

µ f
ξ(φs)2 > 0 and ξ

represents the “mesh size” of the matrix network.
The concentration forces in the fluid ∇π f are ∇π f = − 1

V̂f
∇µ f ,c, where V̂f is the molar volume

of the fluid and µ f ,c is the concentration contribution to the chemical potential of the fluid µ f . Under
isothermal conditions

∇µ f = V̂f∇p−∇µ f ,c = V̂f∇(p− π f ). (7)

Similar relations hold for concentration forces ∇πs in the solid, which satisfy φs∇πs + φ f∇π f = 0.

2.3. Equations of Motion

The theory of mixtures hypothesizes that the motion of each constituent is governed by the usual
balance equations, as if it was isolated from the other one. Neglecting inertial terms, and in the absence
of external body forces, the momentum balance for the solid and the fluid reads

divσs + φs(fs +∇πs) = 0, divσ f + φ f (f f +∇π f ) = 0.
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Using the expressions for the stress tensors (4) and (5), these equations become

div σ̂s + φs(−∇p +∇πs) + φsfs = 0, φ f (−∇p +∇π f ) + φ f f f = 0. (8)

Combining (8), (6) and (3) we obtain the Darcy law in the presence of concentration gradients

q = −kh∇(p− π f ) = φ f (v f − vs). (9)

Adding up Equation (8), we find an equation relating solid displacements and pressure

div σ̂s(us)−∇p = 0. (10)

The solid velocity is then vs =
∂us
∂t . These equations are complemented by the conservation of

mass (1) and (2), which now reads as

div(vs) = −div(q) = div(kh∇(p− π f )). (11)

The flux (9) can be rewritten as q = khdiv(−σ̂s + π f I), where −σ̂s + π f I is the swelling stress.
In biphasic swelling theory [28], it is customary to work with p− π f = p f , where p f is associated
to the fluid chemical potential by (7) and π f is identified with the osmotic pressure created by
the concentration of a specific chemical [28,29]. The osmotic pressure in the biofilm is caused by
the concentration of EPS produced by the cells and can be taken to be proportional to the volume
fraction of solid biomass π f = Πφs, Π being the osmotic compressibility [11]. Equation (10) then
motivates the introduction of effective constitutive laws for the whole mixture of the form [28]
σ(u) = σ̂s(u)− pI = σ̂s(u)− (p f + π f )I, as usual in poroelastic theory.

2.4. Final Equations

Summarizing the main governing equations, we get

∂φs

∂t
+ div(φsvs) = g(cn)φs, (12)

div(vs) = div(kh(φ f )∇p f ), (13)

µs∆us + (µs + λs)∇(div(us)) = ∇(p f + π f ), (14)

vs =
∂us

∂t
, π f = π(φs), (15)

in the region occupied by the biofilm Ωb(t), which varies with time. In equilibrium, q = vs = f f = 0.
At the biofilm boundary, the jumps in the total stress vector and the chemical potential vanish:

(σ̂s − pI)n = (σ̂s − (p f + π f )I)n = text, p f = p− π f = pext − π f ,ext,

when applicable. In this quasi-static framework, the displacements us depend on time through the
motion of the biofilm boundary.

If we need to track the variations of the nutrient concentration, we may use effective continuity
equations for chemical concentration in tissues [30,31]. For the limiting concentration cn:

∂cn

∂t
+ div(v f cn)− div(dn∇cn) = −rn(φs, cn), rn(φs, cn)=φskn

cn

cn + Kn
, (16)

where dn is an effective diffusivity [32]. Setting dn,s and dn, f , the diffusivities in the biomass and

liquid dn = dn, f
3d−2φ f (d−1)

3+φ f (d−1) , d = Keq
dn,s
dn, f

. The source rn(φs, cn) represents consumption by the biofilm,

kn being the uptake rate and Kn the half-saturation constant. Zero-flux boundary conditions are
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imposed at the air–biofilm interface. Instead, at the agar–biofilm interface, we may impose a constant
concentration through a Dirichlet boundary condition. Being more realistic, we couple this diffusion
equation to another one defined in the agar substratum Ωa(t) with zero source and transmission
conditions at the interface [13].

Solving Equations (12)–(15), studying the evolution of a biofilm also requires tracking the
dynamics of the biofilm boundary, see Figure 3. In principle, there are two boundaries of a different
nature: the air–biofilm interface and the agar–biofilm interface.

(a) (b)

Figure 3. Schematic representation of a biofilm slice, with moving air–biofilm interface h and
agar–biofilm interface ξ. (a) Initial stages: ξ is flat. (b) Later evolution: ξ deviates out of a plane.

2.5. Motion of the Air–Biofilm Interface

During the first stages of biofilm spread, the agar–biofilm interface remains flat, whereas the
biofilm reaches a height x3 = h(x1, x2, t), see Figure 3a. Integrating (2) in the x3 direction we
obtain

∫ h
0

∂(v·x̂1)
∂x1

dx3 +
∫ h

0
∂(v·x̂2)

∂x2
dx3 +

∫ h
0

∂(v·x̂3)
∂x3

dx3 = 0, x̂1, x̂2 and x̂3 being the unit vectors in the
Cartesian coordinate directions. By Leibniz’s rule∫ h

0
∂(v·x̂i)

∂xi
dx3 = ∂

∂xi

[∫ h
0 (v · x̂i) dx3

]
− v · x̂i

∣∣
h

∂h
∂xi

, i = 1, 2.

Therefore,

∂
∂x1

[∫ h
0 (v · x̂1) dx3

]
+ ∂

∂x2

[∫ h
0 (v · x̂2) dx3

]
− v · x̂1

∣∣
h

∂h
∂x1
− v · x̂2

∣∣
h

∂h
∂x2

+ v · x̂3
∣∣
h = v · x̂3

∣∣
0. (17)

Differentiating x3(t) = h(x1(t), x2(t), t) with respect to time and using v · x̂i =
dxi
dt , i = 1, 2, 3,

we find v · x3
∣∣
h = dx3

dt = d
dt h(x1(t), x2(t), t) = ∂h

∂t +
∂h
∂x1

dx1
dt + ∂h

∂x2

dx2
dt = ∂h

∂t + v · x1
∣∣
h

∂h
∂x1

+ v · x2
∣∣
h

∂h
∂x2

.
Inserting this identity in (17), we find the equation

∂h
∂t +

∂
∂x1

[∫ h
0 (v · x̂1) dx3

]
+ ∂

∂x2

[∫ h
0 (v · x̂2) dx3

]
= v · x̂3

∣∣
0, (18)

where v · x̂i =
dus,i

dt − kh(φ f )
∂p f
∂xi

, i = 1, 2, 3. To obtain a closed equation for the height h we need to

calculate the velocity of the solid vs =
dus
dt , the modified pressure p f and the volume fraction of fluid

from (12) and (13). This equation is able to describe accelerated spread due to osmosis, at least in
simplified geometries, as we illustrate next.

From Equation (18), we derive an approximated equation for the early evolution of the height of
a circular biofilm, see Appendix A for details and assumptions

ht−
KR
R0

e3t

r
(rhrth3)r−

3KR
2R0

e3t

r
(rhrh2ht)r−

KR
R0

e3t

r
(rhrh3)r−

3KR
2R0

e3t

r
(rhrh3)r−

KRt

R0

e3t

r
(rhrh3)r =0. (19)

A simplified version

ht − K(1 +
3
2
)Re3t 1

r
(rhrh3)r = 0, K =

gµ f

3ξ2
∞µs(1− φ∞)2R0

h3
0, (20)
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has self-similar solutions. Restoring dimensions, they take the form

h = h0egt(R/R0)
−2 f (

r
R
) = egt(R/R0)

−2(1− 3
2

r2

R2 )
1
3 , R = R0

(
7
3

K(1 +
3
2
)(e3gt − 1) + 1

) 1
7

. (21)

Replacing (1 + 3/2) by 1 in (21), we recover the self-similar solution found in [11], with gµ f
instead of µ f (µ f being the fluid viscosity) and the Lamé coefficient of the solid biomass µs instead of
the viscosity of the fluid biomass µs.

Figure 4 compares the time evolution of the biofilm height profiles starting from a smoothed
version of (21). Notice that (21) only makes sense when R2 > 3/2 r2, and that the slope diverges at
r =
√

2/3R. Experiments show that a thin biofilm layer precedes the advance of the biofilm bulk [11].
We set h = h∞ > 0 beyond that point. The dashed green line in Figure 4 represents the numerical
solution of (20), with R given by (21) for K = 10−5, and hinf = 10−3, replacing (1 + 3/2) by 1 as in [11].
The dotted red line and the solid blue line depict the numerical solution of (20) and (19), respectively,
with R given by (21) and keeping the same data. They all show the transition from vertical growth to
horizontal spreading as time goes on. The effect of the additional time derivatives in (19) is to flatten
the profiles.

Figure 4. Biofilm height at dimensionless times 0 (a), 1 (b), 6 (c), and 7 (d) for K = 10−5 and hinf = 10−3.
The dotted red line and the solid blue line depict the numerical solutions of (20) and (19), respectively,
with R given by (21) and keeping the same data. We can observe the transition from an initial stage in
which increase in biofilm height dominates to a stage with faster horizontal spread. The green line is a
reference self-similar approximation.

When the interface biofilm/agar is not flat, but admits a parametrization of the form x3 =

ξ(x1, x2, t), as in Figure 3b,
∫ h

ξ
∂(v·x̂i)

∂xi
dx3 = ∂

∂xi

[∫ h
ξ (v · x̂i) dx3

]
− v · x̂i

∣∣
h

∂h
∂xi

+ v · x̂i
∣∣
ξ

∂ξ
∂xi

, i = 1, 2.
Repeating the previous computations in the interval [ξ, h], the equation for the biofilm height becomes

∂h
∂t +

∂
∂x1

[∫ h
ξ (v · x̂1) dx3

]
+ ∂

∂x2

[∫ h
ξ (v · x̂2) dx3

]
= v · x̂3

∣∣
ξ
− v · x̂1

∣∣
ξ

∂ξ
∂x1
− v · x̂2

∣∣
ξ

∂ξ
∂x2

. (22)

Knowing ξ, this equation can be solved numerically coupled to (12) and (13).

2.6. Motion of the Agar/Biofilm Interface

Equations for the dynamics of the agar–biofilm interface follow using a Von Karman-type
approximation, as the thickness of the biofilms is small compared to its radius. Although initially
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flat, the displacements in the direction orthogonal to the interface may become large. Thus, the linear
definition of the strain and stress tensors in (5) is replaced by [33]

εi,j =
1
2

(∂ui
∂xj

+
∂uj

∂xi
+

∂ξ

∂xi

∂ξ

∂xj

)
+ ε0

i,j, i = 1, 2, (23)

which includes nonlinear terms, as well as residual strains ε0
i,j. We denote the in-plane displacements

by u = (u1(x1, x2, t), u2(x1, x2, t)) and the out-of-plane displacements of the interface by ξ(x1, x2, t).
The coordinates (x1, x2) vary along the 2D projection of the 3D biofilm structure on the biofilm/agar
interface. Equation (14) becomes divσ̂ = ∇(p f + π f ), with σ̂ given by (5) and (23). Formally, this
allows us to identify the biofilm with an elastic film growing on a viscoelastic agar substratum.
The pressure terms become residual stresses. Then, the interface motion is governed by the
equations [13,34]:

∂ξ

∂t
=

1− 2νa

2(1− νa)

ha

ηa

[
D(−∆2ξ + ∆CM) + h

∂

∂xj

(
σi,j(u)

∂ξ

∂xi

) ]
− µv

ηa
ξ, (24)

∂u
∂t

=
hah
ηa

div(σ(u))− µv

ηa
u, (25)

where ha is the thickness of the viscoelastic agar substratum and µv, νa, and ηa its rubbery modulus,
Poisson ratio, and viscosity, respectively. The tensor σ is given by

σ11 = E
1−ν2 (ε11 + νε22) + σ0

11, σ12 = E
1+ν ε12 + σ0

12, σ22 = E
1−ν2 (ε22 + νε11) + σ0

22, (26)

with ε defined in (23); ν and E being the Poisson and Young moduli of the biofilm (5), respectively; and
σ0 represents the residual stresses. The bending stiffness is D = Eh3

12(1−ν2)
, h being the initial biofilm

thickness. Here, the first Equation (24) describes out-of-plane bending ξ, and the second one (25)
governs in-plane stretching for the displacements u = (u1, u2). Modified equations taking into account
possible spatial variations in the elastic moduli are given in [35].

To identify the relevant scales governing the evolution of the agar–biofilm interface we
nondimensionalize (24) and (25). Making the change of variables x̂ = x

R , û = u
R , ξ̂ = ξ

h , σ̂ = σ
E ,

t̂ = t
T , where R is the approximate biofilm radius, and setting R = γh, the dimensionless equations

become

∂ξ̂

∂t̂
=

[
12(1− ν2)γ2 ∂

∂x̂j

(
σ̂i,j(û)

∂ξ̂

∂x̂i

)
+ (−∆2

x̂ ξ̂ + ∆x̂ĈM)

]
− T

µa

ηa
ξ̂, (27)

∂û
∂t̂

= τ divx̂σ̂(û)− T
µa

ηa
û, (28)

where T = 2(1−νv)
1−2νv

ηvh
hv

12(1−ν2)γ4

E = τ
ηvh
hvE γ2, τ = 24 (1−νv)

(1−2νv)
(1 − ν2)γ2. Wrinkled structures develop

when the nonlinear terms are large enough, therefore γ = R
h must be large enough.

The residual stresses σ0 in (26) can be estimated averaging the osmotic and fluid pressure
contributions to the three-dimensional biofilm. If the solution of (12)–(15) in the biofilm Ωb(t) is
known, σ0

ij could be estimated from

−
∫ x3=h

x3=ξ
[(p f + π f )I] dx3, i, j = 1, 2, (29)

where x3 = h and x3 = ξ define the two biofilm interfaces with air and agar, see Figure 3. Analytical
approximations (19)–(21) of the the biofilm height h in early stages of the biofilm evolution allow for
simple simulations of the onset of wrinkle formation. Figure 5 uses these asymptotic profiles to compute
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pressures and velocities by means of (A11)–(A14). Starting from an initially flat biofilm, (29) suggests
that we should consider stress profiles of the form −Ah2/2− ARh −Πφ∞, where A =

gµ f

ξ2
∞(1−φ∞)2 ,

which are nondimensionalized dividing by E. The first two terms reflect the stresses due to growing
height and radius, whereas the last one accounts for the osmotic pressure. Inserting these residual
stresses in (24)–(26) we generate small inhomogeneities and wrinkles in Figure 5. However, these
approximations neglect spatial variations in concentrations, as well as changes in cell behavior, and
therefore, in stresses and pressures. Therefore, the patterns display soon an unrealistic behavior, with
wrinkles excessively growing in the central region.

(a) (b)

(c) (d)

Figure 5. Wrinkle formation and coarsening in a growing film with residual stresses computed from
analytical formulas for the pressures. As the approximation breaks down, the height of the central
wrinkles increases much faster than the height of the outer ones, which blur in comparison. Snapshots
taken at times (a) 1.8/g, (b) 2/g, (c) 2.2/g, and (d) 2.4/g, starting from a randomly perturbed biofilm
of radius R0 = 10−3 m and height h0 = 10−4 m. The radius does not vary significantly during this
time, whereas the height becomes of the order of the radius at the end. Parameter values: 1/g = 2.3
hours, µ f = 8.9× 10−4 Pa·s at 25o, ξ∞ = 70 nm, φ∞ = 0.2, ha = 100h0, Π = 30 Pa (taken from [11]),
E = 25 kPa (taken from [12]), ν = 0.4, µs = 8.92 kPa, νa = 0.45, ηa = 1 kPa·s, µa = 0, hin f = h0/10.

Solving the full set of coupled equations we have derived is very costly and faces severe numerical
difficulties at contact points. Alternatively, we may set σ0 = 0 and work with the residual strains ε0

in (23), which can be related to growth tensors created by stochastic cell processes as we discuss next.

3. Incorporating Cellular Behavior

Cells within a biofilm differentiate to perform different tasks, and can deactivate due to lack of
resources or die as a result of biochemical stress and waste accumulation [10,12]. Such variations in
the biofilm microstructure affect the overall shape [13]. Cell activity enters the previous deterministic
model through the biomass creation term g(cn)φs in (12), the nutrient consumption term rn(φs, cn)

in (16), and the residual stresses σ0 in (26). However, this does not account for cell death, cell
deactivation and cell differentiation.
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Differentiation implies changes in phenotype while preserving the same genotype. For B. subtilis
biofilms, the differentiation chain through which different cell types originate is established in [10],
see Figure 6. Initially, we have a population of similar alive cells glued together in a matrix, most of
which have lost their individual motility. All of them secrete ComX. If the concentration of ComX
becomes large enough, some cells differentiate and start producing surfactin, losing their ability to
reproduce. For large enough surfactin concentrations, other normal cells differentiate and become EPS
producers. These cells reproduce more slowly than normal cells. Cells may also die due to biochemical
stresses [12], preferentially at high-density regions, such as the agar–biofilm interface. In the upper
regions of the biofilm, depletion of resources may trigger deactivation of cells, which become spores.
Undifferentiated cells retaining some motility are restricted to the bottom edges [10].

Figure 6. Layered distribution of dead, active, and inert cells, as illustrated by slices of a growing
biofilm. Dead cells appear at the bottom of three peaks present in the initial biofilm seed.

To a large extent, these processes have a random character. Hybrid models combine stochastic
descriptions of cellular processes with continuous equations for other relevant fields. This allows us to
consider the inherent randomness of individual bacterial behaviors as well as local variations [10,36].
We will explain how to introduce cell variability in the mixture model next.

3.1. Cellular Automata and Dynamic Energy Budget

In a cellular automata approach, space is divided in a grid of cubic tiles. This grid is used to
discretize all the continuous equations: concentrations, deformations, pressures, etc. To simplify
geometrical considerations, we initially assume that each tile can contain one bacterium at most.
We describe bacterial metabolism using a dynamic energy budget framework [9,37]. According to this
theory [37], cells create energy from nutrients/oxygen, which they use for growth, maintenance, and
product synthesis. Damage-inducing compounds can cause death. The metabolism of each cell Cj is
described by the system:

dej
dt = ν′( f − ej), f = cn

cn+Kn
, ν′ = νe−γε,

dvj
dt =

(
rj

aj
aM
− hj

)
vj, rj =

(
ν′ej−mg

ej+g

)+
,

dve,j
dt = (1− α)re,jvj, re,j = krj + k′,

dqj
dt = ej(sGρvj qj+ha)(ν′−rj)− (rj+re,j)qj,
dhj
dt = qj − (rj + re,j)hj,

dpj
dt = −hj pj, pj(0) = 1,

daj
dt = (rj + re,j)(1−

aj
aM

),

(30)

where the cell variables are their energy ej(t), volume vj(t), produced volumes of EPS ve,j(t),
acclimation aj(t), damage qj(t), hazard hj(t), and survival probability pj(t), for j = 1, . . . , N, N
being the total number of cells. These equations are informed by the value of continuous fields at the
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cell location x (the tile of the cellular automata grid containing the cell): nutrient concentration cn(x, t),
polymeric matrix concentration ce(x, t), surfactin concentration cs(x, t), ComX concentration ccx(x, t),
and environmental degradation ε(x, t), which are governed by

dcn
dt = −ν′ f ρ ∑j vjδj + div(dn∇cn)− div(v f cn),

dccx
dt = ρ ∑j rcx,jvjδj + div(dcx∇ccx)− div(v f ccx),

dcs
dt = ρ ∑j rs,jvjδj + div(ds∇cs)− div(v f cs),
dce
dt = αρ ∑j re,jvjδj + div(de∇ce)− div(v f ce),
dε
dt = νε ∑j(rj + νmm)vjδj + div(dε∇ε)− div(v f ε).

(31)

The parameters ν, m, g, aM, and ρ are the energy conductance, the maintenance rate, the
investment ratio, the target acclimation energy, and mass density for the bacteria under consideration,
respectively. Other coefficients are the multiplicative stress coefficient sG, the maintenance respiratory
coefficient νm, the noncompetitive inhibition coefficient Kv, and the environmental degradation
coefficients γ and νε. The parameters dn, dcx, ds, de, and dε stand for diffusivities. The Dirac masses δj
are equal to 1 at the location of cell Cj and zero outside.

The production rates rs,j and re,j are zero, except when the cell is a surfactin producer, or an
EPS producer, respectively. In the latter case, re,j = krj + k′, where k and k′ correspond to constants
controlling the chemical balances for polymer production. The parameter α ∈ [0, 1] regulates the
fraction of produced polymer that remains in a monomeric state and diffuses as ce, instead of becoming
part of larger chains that remain attached to the cells forming the matrix ve.

In this framework, bacteria Cj die with probability 1− pj. Taking a cellular automata view, we
modify the cell nature according to selected probabilities, which are defined in terms of concentration
values at the cell location. A normal bacterium becomes a surfactin producer with probability pcx =

ccx
ccx+K∗cx

and an EPS producer with probability pe = cs
K∗s +cs

(
1− cn

K∗n+cn

)
. Cells become become inert

with probability pi = 1− cn
K∗n+cn

. A non-surfactin-producer whose volume has surpassed a critical
volume for division, divides with probability pd = cn

K∗n+cn
. Figure 6 represents the cell type distribution

for a growing biofilm. The simulation started from a circular seed with a diameter of 60 cells, and
nonuniform height. Each colored box in the slices represents one cell. The brown areas representing
dead cells appear at the bottom of three initial peaks. We set kn L2

dnKn
= 0.01, kcx L2

dcxKcx
= 0.01, and ks L2

dsKs
= 0.8.,

where L is a reference length representing the tile size (approximately the bacterium size 2 µm).
In principle, when a bacterium divides, the daughters occupy the space left by it, while pushing

the other bacteria. Dealing with the geometrical aspects of arrangements of dividing bacteria is a
complicate issue for which different approaches have been explored [4,5]; it is out of the scope of the
present work. For simplicity, we consider here that space is partitioned in a grid of cubic tiles, as
explained earlier, and this grid is used to discretize all the continuous equations for concentrations,
displacements, pressures, etc. Each tile may contain at maximum one bacterium, the tile size is the
maximum size a bacterium may attain. Once a bacterium divides, one daughter remains in the tile,
whereas the other occupies a random neighboring tile, either empty, or containing a dead cell, which
is reabsorbed. In the absence of them, it will push neighboring cells in the direction of minimal
mechanical resistance, that is, minimal distance to air. The resulting collection of tiles defines the new
Ωb. Figure 7 represents the evolution of a growing biofilm seed considering only division processes
with cn(0) = Kn and kn L2

dnKn
= 8. Notice the development of contour undulations.
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Figure 7. Top view of the evolution of a biofilm seed formed by two layers of cells with a diameter of
40 cells, depicted at steps: (a) 45; (b) 90; (c) 135; (d) 180; (e) 225; (f) 270. Darkest colors correspond to
layers of increasing height up to 10 cells. Contour undulations develop as the biofilm spreads.

The resulting full computational model would proceed as follows.

Initialization.

• We set an initial distribution of N bacteria characterized by their energies ej(0), volumes vj(0),
damage qj(0), hazard hj(0), acclimation aj(0), and attached EPS volume ve,j(0), j = 1, . . . , N.

• Each bacterium is initially classified as normal, surfactin producer, EPS producer, or inert. Bacteria
are distributed in the tiles x of the grid. The empty space around them is filled with water and
dissolved substances. In this way, we may compute the volume fractions of biomass φs(x, 0)
and fluid φ f (x, 0) in each tile x, as well as the osmotic pressure Π(x, 0). The pressure p(x, 0) is
obtained from (13) with vs = 0 and σ0(x, 0) from (29).

• We compute stationary solutions of the Equation (31) for v f = 0 by a relaxation numerical
scheme. All except the equation for cn are solved using the grid defining Ωb(0) with no flux
boundary conditions. The equation for cn is solved in the biofilm–agar domain, that is, Ωb(0) ∪
Ωa(0), imposing continuity of concentrations and fluxes at the agar–biofilm interface and no flux
boundary conditions at the air–biofilm interface.

Evolution with a time step dt: From time t− dt to t.

• We update ξ(t) using (24)–(29). Keeping the grid tile fixed, we shift the contains of the tiles
upwards of downwards to reflect the evolution of ξ(t) when the deflections are large enough.

• We update the cellular fields solving (30) with the stationary concentration values for (31). The time
derivatives in (31) are small, so that time evolution is driven by the source terms reflecting cell
activity and changes in the biofilm boundaries.

• We update the bacterial status checking whether normal bacteria become surfactin or EPS
producers, whether any of them deactivates or dies, and whether they divide, with the
probabilities assigned to each situation. In case a bacterium divides, we reallocate the newborn cell.
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• In the resulting biofilm configuration Ωb(t), we compute the volume fractions of biomass φs(x, t)
and fluid φ f (x, t) in each tile. This also provides the osmotic pressure π f (x, t). The fluid pressure
p(x, t) is obtained from (13), the displacements us(x, t) from (13), and σ0(x, t) from (29). The solid
velocities are approximated by vs(x, t) ∼ (us(x, t)− us(x, t− dt))/dt. Then, the fluid velocity is
given by (9).

• We yet need to take into account water absorption from agar. To do so, we solve
∂φ f
∂t +div(v f φ f ) =

0 in the biofilm/agar system. Alternatively, we can solve only in the biofilm, using φ f = 0 at

the biofilm/agar interface and
∂φ f
∂n = h

R φ f for boundary conditions, where h and R are reference
values for the biofilm height and radius. Then, we revise the biofilm configuration, creating water
tiles with probability φ f and shifting the contains of the neighbouring tiles. This provides the
final biofilm configuration Ωb(t), that is, the occupied tiles, their contents, the bacterial status and
fields, as well as the values of the continuous fields at each tile.

This process mixes the stochastic evolution of some cellular processes with continuous equations
for a number of fields. In case, any of the fields computed from the tile configuration is not smooth
enough to solve the required partial differential equations, we filter it using a total variation based filter
introduced in [18] to avoid such artifacts. Figure 8 depicts the formation, coarsening, and branching of
wrinkles in an spreading biofilm when the residual stresses are fitted by an empirical circular front
approximation of magnitude −0.1 advancing one grid box every 14/τ seconds.

This hybrid model also introduces a number of parameters that should be calibrated to
experimental data, not yet available. The parameters appearing in the dynamic energy budget
equations have been fitted to experimental measurements for Pseudomonas aeruginosa biofilms under
the action of antibiotics [9]; fitting to Bacillus subtilis would require new specific experiments.

3.2. Balance Equation Approach

The macroscopic effect of the presence of differentiated bacteria can partially be understood by
means of additional balance equations, inserting specific information in them. Let us set φa and φd as
the volume fraction of active and dead cells, respectively. We introduce an additional volume fraction
of inert cells φi, in such a way that φs = φa + φi + φd. The balance equations become

∂φa

∂t
+ div(φavs) = [g(cn)− gw(cw)− gi(cn)

+]φa + gi(cn)
−φi, (32)

∂φd
∂t

+ div(φdvs) = gw(cw)φa − krφd, (33)
∂φi
∂t

+ div(φivs) = gi(cn)
+φa − gi(cn)

−φi, (34)
∂φ f

∂t
+ div(φ f v f ) = −rs(φa, φd, cn), (35)

where rs(φa, φd, cn) = g(cn)φa − krφd, kr being the rate of reabsorption of dead cells and cw the
concentration of waste. The concentration of nutrients still obeys (16), replacing φs by φa in the
consumption term, whereas the concentration of waste cw obeys a similar reaction–diffusion equation
with source rw(φa) = kwφa, kw > 0. Here, gi(cn) is positive for small enough values of cn and negative
otherwise. For instance, we might take gi(cn) = α− cn

cn+Kn
, α ∈ (0, 1). We assume that dead and alive

cells move with the velocity of the solid biomass vs. Adding up Equations (32)–(35), we recover the
relations (2) and (13). The displacements of the solid biomass us still obey (14) with two modifications.
First, the osmotic pressure π f depends only on the fraction of cells producing EPS, which must be
alive. Thus, π f = π(φa). Second, the elastic constants λs and µs may vary spatially in case necrotic
regions containing a large density of dead cells or swollen regions appear. We focus here on the effect
of necrotic regions on liquid transport within the biofilm. Figure 9 illustrates water accumulation in
regions with an initially high volume fraction of dead cells.
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(a) (b) (c)

(d) (e) (f)

(g) (h)

Figure 8. Snapshots of wrinkle formation, coarsening and branching as a circular biofilm expands
following (27) and (28) and using an empirical fit to the residual stresses generated by cellular processes.
The biofilm has Poisson ratio ν = 0.5 and Young modulus E = 25 kPa. The Poisson ratio and rubbery
modulus of the substratum are νv = 0.45, µv = 0, and γ = 16. (a) 26 T

τ s; (b) 260 T
τ s; (c) 520 T

τ s;
(d) 780 T

τ s; (e) 1040 T
τ s; (f) 1300 T

τ s; (g) 1560 T
τ s; (h) 1820 T

τ s;

(a) (b) (c)

(d) (e) (f)

Figure 9. Effect of the presence of dead regions in liquid transport. Initial volume fractions:
(a) water, (b) dead cells, and (c) alive cells. Snapshot showing dead cell reabsorption and water
accumulation in the originally dead regions at a later time: volume fractions of (d) water, (e) dead cells,
and (f) alive cells.
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To investigate the spatial distribution of cells secreting autoinducers, we introduce additional
volume fractions of active cells φa = φu + φsur f + φeps, where φsur f and φeps stand for cells producing
surfactin and EPS respectively, whereas φu are undifferentiated active cells. The balance equations
governing the different subpopulations are

∂φu

∂t
+ div(φuvs) = g(cn)φu + ge(cn)φeps − [gc(ccx) + gs(csur f )]φu (36)

∂φsur f

∂t
+ div(φsur f vs) = gc(ccx)φu, (37)

∂φeps

∂t
+ div(φepsvs) = gs(csur f )φu, (38)

where ge(cn) = βg(cn), β ∈ (0, 1), gs(csur f ) = k∗sur f
csur f

csur f +K∗sur f
, and gc(ccx) = k∗cx

ccx
ccx+K∗cx

.

The autoinducer concentrations are governed by balance equations of the form (16) with sources
rsur f = ksur f (1 −

csur f
csur f +Ksur f

) and rcx = kcx(1 − ccx
ccx+Kcx

), respectively, as well as no-flux boundary
conditions at the biofilm boundaries.

If we consider dead and inert cells too, systems (32)–(35) should be updated replacing g(cn)φa by
g(cn)φu + ge(cn)φeps in Equation (32) and in the definition of rs for Equation (35). Likewise, systems
(36)–(38) should be updated including transfer to and from the inert status.

4. Discussion

Growth of cellular aggregates involves mechanical, chemical, and cellular processes acting
in different time scales. Bacterial biofilms provide basic environments to test hypotheses
and mathematical models against experimental observations. Recent experimental work with
Bacillus subtilis reveals a host of phenomena during biofilm formation and spread. Different approaches
have been exploited to account for different aspects: thin film equations and two-phase flow models for
accelerated spread caused by osmosis [11], elasticity theory for the onset of wrinkle formation [12,35],
Von Karman-type approximations for wrinkle branching [13,16], and Neo Hookean models for contour
undulations and fold formation [17]. In principle, poroelastic models allow to consider liquid transport
and elastic deformation in a unified way [18], though detachment and blister formation require
further developments [15]. Current models take mainly a deterministic point of view, thus, random
cell behavior linked to fluctuations is poorly accounted for. However, cell differentiation [10] to
incorporate new phenotypes performing new tasks, such as autoinducer and EPS matrix production,
plays a key role in biofilm development. Elementary cellular automata approaches were implemented
in [13,18] and used to generate nonuniform residual stresses partially defining the biofilm shape.
Here, we develop a hybrid computational model, combining a solid—fluid mixture description of
mechanical and chemical processes with a dynamic energy budget based cellular automata approach
to cell metabolism.

Cellular automata representations are convenient from a computational point of view, as they
allow for simple rules to transfer information between individual cells and the film. However, they
provide too crude a representation of bacterial geometry. In our framework, this representation
could be improved by resorting to different agent based models. Individual-based models, originally
developed to study biofilms in flows [20,21], have recently been adapted to describe biofilms spreading
over air–agar interfaces and solid–semisolid interfaces [4,5]. Similarly, immersed boundary methods
introduced to study bodies immersed in fluids are being extended to study biofilm spread in flows [38]
and at interfaces [39]. We could resort to Individual based or Immersed boundary approaches for a
better description of bacterial geometry and their spatial arrangements.

Working with biofilms spreading on an air–agar interface, we have chosen to represent the
presence of small fractions of polymeric matrix in an effective way, as done in previous related
work [11,22]. The biomass formed by bacteria and polymeric threads is considered one phase [11],
with elastic properties as in [22]. The liquid transporting dissolved chemicals is considered a fluid
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phase. Production of EPS also affects internal liquid flow by osmosis, mechanism we include in our
equations for the fluid phase. Depending on the relative fractions and the properties of each phase as
well as the characteristic times and lengths, the whole system may display an elastic, fluid, viscoelastic,
or truly poroelastic behavior [25,26]. This formulation allows to derive effective equations for the
dynamics of the interfaces including the effect of biomass growth, fluid, and osmotic pressures through
residual strains and stresses. Resorting to individual-based or immersed boundary representations of
cells, we might describe the polymeric matrix as a network of threads instead [4,38], but we should
define heuristic rules for their behavior.

Constructing numerical solutions of the full model is a computational challenge, out of the scope
of the present work. Instead, we construct numerical solutions, in particular, geometries, guided often
by asymptotic simplifications. In this way, we show that the model is able to reproduce behaviors
experimentally observed: accelerated spread due to water intake [11,15], wrinkle formation and
branching [12,14,15], layered distributions of differentiated cells [10], development of undulations
in the contour [15,17], and appearance of regions containing a high volume fraction of water [14,15].
Existing models are devised to explain specific behaviors in relation with particular experiments.
An advantage of our approach is that a single model can be used to display all those behaviors
and to simulate or even analyze under which conditions they are observed, as the model allows for
asymptotic analysis in specific situations. The partial study of different phenomena also suggests
empirical expressions for magnitudes representing cellular activities required by the mixture model,
such as source terms or residual stresses, which can be inserted in it to reduce computational costs.
Our simulations of biofilm spread and wrinkle formation use parameter values experimentally
measured for Bacilus subtilis biofilms in [11,12], producing reasonable qualitative and quantitative
results. However, the parameters for the dynamic energy budget systems for cell metabolism, as well
as those appearing in the concentration equations are taken from Pseudomonas aeruginosa studies [9].
The probability laws for the cellular automata model and the balance equations for differentiated
cell populations involve additional unknown parameters. Thus, our model involves a collection of
parameters that should be fitted to experimental data, specially as far as cell metabolism is concerned.
Experimental measurements of bacterial dynamics allowing to fit such parameters are yet missing.
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Appendix A

Here, we derive approximate expressions for the volume fractions, velocity, and pressure fields,
as well as equations for the height, by considering a simplified version of the equations presented in
Section 2 for a slice in the plane x1x3, as in Figure 3a.

Only the components x1 and x3 of the variables are relevant. To simplify the notation, in this
section we take φ = φs, p f = p, π f = π = Πφ, us = u, vs = v. The subsequent arguments follow
those in [11] for biphasic fluid mixtures, with adequate modifications when necessary.

Following the work in [11], we assume that g is approximately constant and φt << gφ. Then, the
governing equations become

div(vφ) = gφ, div(v) = div
[
(1−φ)2

ζ ∇p
]

, µs∆u + (µs + λs)∇(div(u)) = ∇(p + Πφ), (A1)
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where v = ∂u
∂t . Recall that ζ =

µ f
ξ(φ)2 , we will set ζ =

µ f

ξ2
∞

with ξ∞ = ξ(φ∞), φ∞ being a background
value. We fix the displacements at the biofilm/agar interface x3 = 0 and impose no stress conditions at
the biofilm–air interface x3 = h, assuming that the normal vector n ∼ (0, 1):

(u1, u3)
∣∣
x3=0 = (0, 0), σ13

∣∣
x3=h = µs(u1,x3 + u3,x1)

∣∣
x3=h = 0,

σ33
∣∣
x3=h =

[
−(π f + p f ) + 2µsu3,x3 + λsdiv(u)

] ∣∣
x3=h = −(π f + p f )ext.

(A2)

Next, we nondimensionalize setting ui = Uiu′i, vi = Viv′i, x1 = R0x′1, x3 = hx′3, R = R0R′,
p = Pp′, with h/R0 << 1. In practice, the height h = h(x1, t) depends on x1 and t and the reference
radius R0 may vary with time. If we set t = Tt′, with T = 1/g, then Vi = Uig. Changing variables and
dropping the ′ symbol to simplify, we find

V3

gh
[φv3,x3 + φx3 v3] = φ,

V3

h
v3,x3 =

P
h2ζ

[px3x3(1− φ)2 − 2(1− φ)φx3 px3 ], (A3)

µsU1R0

Ph2 u1,x3x3 = px1 +
Π
P

φx1 , (2µs + λs)
U3

Ph
u3,x3x3 = px3 +

Π
P

φx3 , (A4)

with boundary conditions:

(u1, u3)
∣∣
x3=0 = (0, 0), u1,x3

∣∣
x3=1 = 0,

[
−(Π

P φ + p) + (2µs + λs)
U3
hP u3,x3

] ∣∣∣
x3=1

= −(Π
P φ + p)ext. (A5)

We can get an approximate solution of (A3) and (A4) in the same asymptotic limit as in [11] with
slight variations due to the fact that we have an equation for the solid biomass displacements, not for
fluid biomass velocities.

First, set V3 = gh and P = gh2ζ, to balance growth and flow in (A3). For the rest, we argue

with (A4). We set K3 = µsU1R0
Ph2 , K2 = (2µs+λs)U3

Ph = 2µs+λs
µ f

ξ2
∞

gh2 and εp = P
Π , obtaining

(φx3 v3 + φv3,x3) = φ, v3,x3 = px3x3(1− φ2)− 2px3 φx3(1− φ), (A6)

K3u1,x3x3 = px1 + ε−1
p φx1 , K2u3,x3x3 = px3 + ε−1

p φx3 , (A7)

with (u1, u3)
∣∣
x3=0 = (0, 0), u1,x3

∣∣
x3=1 = 0,

[
(−ε−1

p φ− p) + 2K2u3,x3

] ∣∣
x3=1 = (−ε−1

p φ− p)ext. Next, we

assume εp << 1 and expand in powers of εp: a = a(0) + εpa(1) + O(ε2
p) where a = u1, u3, v1, v3, φ, p.

The equations for the displacements (A7) impose φ0
x1

= φ0
x3

= 0. Thus, to leading order φ0 = φ∞

and φ = φ∞ + εpφ(1) + O(εp). Inserting the expansions in Equations (A6) and (A7) and equating
coefficients to zeroth order (ε0

p) we find

v0
3,x3

= 1, v0
3,x3

= (1− φ∞)2 p(0)x3,x3 , (A8)

K3u(0)
1,x3x3

= p(0)x1 + φ
(1)
x1 , K2u(0)

3,x3x3
= p(0)x3 + φ

(1)
x3 , (A9)

with boundary conditions (u(0)
1 , u(0)

3 )
∣∣
x3=0 = (0, 0), u(0)

1,x3

∣∣
x3=1 = 0, (−p(0) + 2K2u(0)

3,x3
)
∣∣
x3=1 = −pext.

We have used φext = 0 and included ε−1
p φ∞ in a term ε−1

p p(−1), φ∞ being constant the derivatives

px1 , px3 , pt do not contain this term. Equation (A8) gives v(0)3 = x3. Integrating in time, we get

u(0)
3 = x3t. Introducing this in Equation (A9) we obtain

p(0)x3 = −φ
(1)
x3 . (A10)

Introducing (A10) in (A8) we find 1 = −(1− φ∞)2φ
(1)
x3x3 , with boundary conditions φ

(1)
x3 (1) = 0

and φ
(1)
x3 (0) = φ(1)(0) h

` , where ` is the lengthscale over which gradients develop in the substrate due
to water flowing to the biofilm, approximated by R. The latter boundary condition is established
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in [11] by matching a two phase flow model for the biofilm with another one for agar, we keep it here.

The solution consistent with these boundary conditions is φ(1) = 1
(1−φ∞)2

(
x3 −

x2
3

2 + R
h
)
, which gives

p(0) = p(0)
∣∣
x3=1 + (φ(1)

∣∣
x3=1− φ(1)) = pext + 2K2t+ (1− φ∞)−2

(
x2

3
2 − x3 +

1
2

)
, where the contribution

ε−1 = R
h disappears thanks to the boundary condition. For the expansion of φ in powers of εp to be

consistent we need εp/ε << 1. Notice that u(0)
3 = x3t implies u(0)

3,x3

∣∣
x3=1 = t. To compute u1 and v1 we

use Equation (A9), and the derivatives with respect to x1 of p and φ, which enter this equation through
the dependence on h(x1, t). To address this issue properly, we switch back to dimensional variables
using P = gh2ζ and x′3 = x3/h to get

p =
gµ f

ξ2
∞(1− φ∞)2

( x2
3 + h2

2
− x3h

)
, (A11)

φ = φ∞ + εpφ(1) = φ∞ +
gµ f

Πξ2
∞(1− φ∞)2

(
x3h−

x2
3

2
+ Rh

)
, (A12)

discarding in p the lower order terms which do not contribute to the derivatives. Then, Equation (A9)

yields µsu1,x3x3 =
gµ f

ξ2
∞(1−φ∞)2 hhx1

(
1 + R

h

)
. Integrating twice and applying the boundary conditions

(A2) at 0 and h we find the displacement

u1 =
gµ f

ξ2
∞µs(1− φ∞)2 Rhx1

( x2
3

2
− x3h

)
. (A13)

Differentiating the displacements u1 and u3 with respect to time we get the velocities

v1 =
gµ f

ξ2
∞µs(1− φ∞)2

(
[Rhx1 ]t[

x2
3

2
− x3h]− Rhx1 x3ht

)
, v3 = x3. (A14)

Once we approximate expressions for velocities, pressures, and volume fractions are available
in the x1x3 plane, the equation for the free boundary (18) becomes ht +

∂
∂x1

∫ h
0 v · x̂1 dx3 = v · x̂3

∣∣
0,

v = vs − (1−φ)2

ζ ∇p, where v is the volume averaged velocity and vs the velocity of the solid, given

by (A14). Setting φ ∼ φ∞, we have v · x̂3
∣∣
0 = gh (1−φ)2

(1−φ∞)2 ∼ gh, and the flux becomes
∫ h

0 v · x̂1 dx3 =

gµ f

ξ2
∞µs(1−φ∞)2

(
−[Rhx1 ]t

h3

3 − Rhx1
h2

2 ht

)
− g

h2hx1
2 . Performing the change of variables h = et h̃, ht =

et h̃t + et h̃, and dropping the symbol˜ for simplicity, we find the desired equation.
In radial coordinates the same arguments work. The equation for the height is then:

ht −
gµ f

ξ2
∞µs(1− φ∞)2

1
r

(
r([Rhr]t

h3

3
+ Rhr

h2

2
ht)

)
r
− g

1
r

(
r

h2hr

2

)
r
= gh.

In dimensionless variables r = R0r̃, t = g−1 t̃, h = h0h̃. Dropping the symbol ˜ for

simplicity the equation becomes ht − K 1
r

(
r([ R

R0
hr]th3 + R

R0
hr

3h2

2 ht)
)

r
− h2

0
2R2

0

1
r
(
rh2hr

)
r = h, with

K =
gµ f

3ξ2
∞µs(1−φ∞)2R0

h3
0. Assuming ε = h0/R0 << K we get

ht − K
Rt

R0

1
r

(
rhrh3

)
r
− K

R
R0

1
r

(
rhrth3

)
r
− K

R
R0

1
r

(
rhr

3h2

2
ht

)
r
= h. (A15)

Performing the change of variables h = et h̃, ht = et h̃t + et h̃, and dropping again the symbol˜ for
simplicity, we find (19).
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