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Estimation of the viscoelastic properties of rubber bushings at very high frequencies (up to 2 kHz) is a challenge 
for many damping component manufacturers in the design stage of a quality monitoring procedure. This 
investigation is focused on the capability of lower strain rate testing procedures, such as relaxation tests, to 
estimate and extrapolate the dynamic behavior of rubber bushings from low to moderate frequencies. Fractional 
Zener models are employed to approach bushing behavior in experimental relaxation tests, thus leading to 
a linear viscoelastic model which is employed to estimate the dynamic behavior of rubber bushing under 
harmonics loads up to 150 Hz. The validation of this extrapolation procedure is performed by comparing these 
analytical results with experimental dynamic harmonic tests applied to the same rubber bushings. The deviation 
between both curves demonstrates that it is difficult to compare the behavior from very small deformation rates 
(relaxation tests) to higher deformation rates (harmonic dynamic tests) due to the nonlinear behavior of the 
rubber and its amplitude dependence. However, this investigation demonstrates that the relaxation tests contain 
enough data to define the frequency behavior of linear viscoelastic materials up to moderate frequencies.
Symbols & abbreviations

BEV: battery electric vehicle
DMA: dynamic mechanical analyzer
FCEV: fuel cell electric vehicle
MSE: mean square error
RCB: rubber-compound bushing
𝛼: fractional order of a springpot
𝑐: damping coefficient
𝛿: displacement
𝐹 : load
𝑓 : frequency
𝑓 : cutoff frequency
Γ: Gamma function
𝑘: spring coefficient
𝑘∗: complex dynamic stiffness
𝑘′: storage stiffness
𝑘′′: loss stiffness
𝑚: linear coefficient of a springpot

* Corresponding author.

𝑁 : time discretization
𝐿𝐹 : loss factor
𝜓 : phase angle
𝑡: time

1. Introduction

Comfort is a crucial objective in any automotive design. The drive 
train, motor, and engine transmit noise and vibration into the chassis. 
These uncomfortable feelings also include the vibrations transmitted 
from the road surface [1] or the brake system [2–4]. In that sense, 
vibroacoustic modeling is an essential subject that any automotive de-
signer must treat [5,6]. New drive concepts have recently grown in 
electric mobility with massive innovative projects around hydrogen as 
an energy vector [7–9]. As viable solutions for decarbonization, bat-
tery electric vehicles (BEVs) have the limitations of running time and 
reloading time of the battery. This limitation is solved by the alternative 
of fuel cell electric vehicles (FCEVs). FCEVs use energy stored as hydro-
gen, replacing the battery system used in BEVs. The rest of the vehicle 
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Fig. 1. (a) Schematic representation and (b) a basic rubber bushing for vibration-isolation manufactured by CMP Automotive company.
is similar to a BEV set-up, using an electric motor as a power system 
[10]. The expanding scenario of BEVs and FCEVs in future trends in the 
automotive sector generates new challenges in vibroacoustic modeling 
with noise and vibration at higher frequencies [11].

Internal combustion engine vehicles generate vibration and noise in 
a frequency range of up to 200 Hz [12]. In electric cars, this upper limit 
grows up to 2-3 kHz [13]. This fact is the origin of the challenge in 
vibroacoustic modeling because the damping capabilities of any assem-
bly are strongly affected at these high frequencies [14,15]. Automotive 
suppliers that provide innovative solutions for a smooth and comfort-
able ride must provide spare parts for a range of light and commercial 
vehicles in a growing scenario of power alternatives for mobility. The 
use of rubber bushings is an effective way of reducing the vibration 
and shock between different parts of the vehicle [16]. These rubber 
vibration-isolating mounts separate rigid parts, reducing vibration and 
noise by absorbing and damping the kinetic energy transmitted from 
part to part [17]. These elements are commonly used in different me-
chanical joints: road suspensions, engine or electric motor mounting, 
pivot arms, etc. Rubber bushings are usually composed of outer and 
inner metallic tubes connected by a vulcanized and bonded rubber com-
pound (see Fig. 1). This basic geometry concept is extended to more 
complex set-ups in order to optimize and provide specific stiffness and 
damping characteristics in different directions [18]. In addition, these 
parts are designed to show the optimal behavior in the frequency range 
where vibrations are transmitted between the joint components. As a 
consequence, the design of rubber bushings for an electric motor or 
a combustion engine significantly differs as a result of the frequency 
range of each power system [19].

Rubber compounds, commonly used in the design process of 
vibration-isolation bushings [20–22], are soft materials whose response 
is in a spectrum between elastic and Newtonian fluid behaviors. Re-
ferred to as viscoelastic materials, these compounds are capable of 
transmitting a load between the outer and inner tubes and, at the same 
time, dissipating a fraction of the mechanical work [23]. Characteriz-
ing and understanding the mechanical response of rubber-compound 
bushings (RCB) are critical for the automotive suppliers of these parts. 
There are three testing procedures [24] to quantify the viscoelastic re-
sponse of an RCB (see Fig. 2): (i) relaxation tests, where the part is 
subjected to a constant displacement, registering the load response; (ii) 
creep tests, where the part is subjected to a constant load, registering 
the displacement response; and (iii) dynamic mechanical tests, where 
oscillatory or harmonic displacement is applied, registering the load 
response. The last one is performed in DMAs (dynamic mechanical an-
alyzers) for materials with solid behavior and rheometers in the case 
of liquid-like materials. The choice of the test method depends on the 
application in which the sample or component is to be used. In the 
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specific case of elastomeric materials employed for noise and vibra-
tion dissipation, testing in DMAs is the most common practice [25]. 
However, there is a limitation in available providers of DMA machines 
for testing at very high frequencies. Furthermore, testing rubber bush-
ings requires load amplitudes beyond the limits of these DMAs. There 
are dynamic testing machines focused on this specific issue, but the 
market of high-frequency dynamic stiffness test rigs for elastomeric 
mounts is too limited to consider alternatives in order to extrapolate 
the high-frequency response with experimental tests performed at lower 
frequencies.

The aim of this investigation is to demonstrate the capability of 
lower-frequency testing procedures in order to extrapolate viscoelastic 
behavior at higher frequencies. Therefore, firstly, experimental relax-
ation tests are carried out to design the extrapolation procedure of 
viscoelastic properties at low to moderate frequencies (from 5 Hz to 
150 Hz). Next, experimental harmonic tests are also performed to vali-
date this methodology.

This paper has been organized into three main sections: (i) a descrip-
tion of the viscoelastic numerical model used to approach experimental 
relaxation curves of RCBs; (ii) an overview of the numerical method em-
ploy to solve for the fractional Maxwell-Wiechert constitutive equation 
and (iii), the experimental validation of the estimated viscoelastic mod-
els through dynamic tests of the RCBs at a range from low to moderate 
frequencies.

2. Methodology

As previously described, this investigation aim to use relaxation 
tests in RCBs to extrapolate their behavior at low to moderate frequen-
cies under dynamic harmonic excitations. Fig. 3 shows a diagram of 
the extrapolation procedure. Blue rectangles represent the experimen-
tal tests and grey rectangles show the analytical procedures. Solid-lined 
rectangles state testing procedures (analytical or experimental), and 
dashed-lined rectangles represent data or property that has been esti-
mated or registered. The extrapolation procedure begins with the load 
and displacement experimental data obtained from relaxation tests of 
RCB. The coefficients of a viscoelastic model are established from an it-
erative process that seeks to simulate the load versus displacement data 
obtained from the experimental relaxation tests. Next, the estimated 
viscoelastic model is used to simulate a dynamic harmonic test in a 
frequency range from 5 to 150 Hz. The simulated dynamic stiffness is 
the ratio between an input harmonic load signal and the harmonic dis-
placement obtained from the previously estimated viscoelastic model. 
On the other hand, experimental dynamic harmonic tests are performed 
in a similar frequency range for the same RCBs. Finally, both dynamic 
stiffnesses, the one obtained experimentally and the one estimated with 

the extrapolation procedure, are compared.
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Fig. 2. Testing procedures for viscoelastic characterization of materials (𝐹 : load; 𝛿: displacement; 𝑡: time): (i) creep test, (ii) relaxation test and (iii) dynamic 
harmonic test.
Fig. 3. Diagram of validation of the extrapolation process in which the dynamic 
frequency response of RCBs is extrapolated from the relaxation tests.

The selection of an appropriate viscoelastic model is the most critical 
step in this extrapolation procedure. For that reason, a brief introduc-
tion to the most common viscoelastic models has been included in this 
methodology to justify the eventually chosen one.

When a viscoelastic material is subjected to a harmonic displace-
ment 𝛿 = 𝛿0𝑒𝑖2𝜋𝑓𝑡, the registered load shows the same frequency 𝑓 but 
with a difference 𝜓 in the phase angle, 𝐹 = 𝐹0𝑒𝑖(2𝜋𝑓𝑡+𝜓). This difference 
𝜓(𝑓 ) is directly related to the damping capability of the material and 
its value depends on the frequency 𝑓 . Therefore, the complex dynamic 
stiffness, which is the ratio of the registered load to the applied har-
monic displacement, gives a measurement of the viscoelastic response 
of an RCB to a sinusoidal displacement [26]. The real component of 
complex dynamic stiffness, named storage stiffness, represents the elas-
tic and recoverable energy, while the imaginary component of complex 
dynamic stiffness, named loss stiffness, represents the dissipated energy 
of the pure viscous behavior [27]. Moreover, the loss factor (𝐿𝐹 ) is 
the ratio between the loss stiffness and the storage stiffness. The most 
important properties estimated from the registered data of a dynamic 
harmonic test in an RCB are: (i) the absolute value of the complex stiff-
ness (|𝑘∗(𝑓 )|), and (ii), the loss factor (𝐿𝐹 ) which is also the tangent 
of the phase between the registered load and the applied harmonic dis-
placement at the excitation frequency.

The linear theory of viscoelasticity provides powerful mathematical 
tools to predict the mechanical response of a material or part during an 
arbitrary displacement spectrum. The mathematical models used to sim-
ulate the viscoelastic behavior are based, in a conventional approach, 
on two basic elements: the Hookean spring and the Newtonian dashpot. 
3

The Hookean spring is represented by equation (1):
𝐹 (𝑡) = 𝑘𝛿(𝑡) (1)

while the Newtonian dashpot is governed by the following equation (2):

𝐹 (𝑡) = 𝑐𝛿̇(𝑡) (2)

The combination of these two elements in series or parallel provides 
more complex behavior and, depending on the evaluated material, each 
model will be more or less appropriate. Fig. 4 shows the characteristics 
of three conventional viscoelastic material models, their constitutive 
equations and their response to harmonic excitation, in terms of the 
absolute value of the dynamic stiffness (|𝑘∗|) and the loss factor (𝐿𝐹 ) 
[28].

The equations in Fig. 4 corresponding to the absolute value of 
the dynamic stiffness (|𝑘∗|) and the loss factor (𝐿𝐹 ) of these three 
conventional models (Maxwell, Kelvin-Voigt, and Zener models) are 
implemented in Matlab® and results are compared in Fig. 5. The co-
efficients used for this comparison were: 𝑘0 = 𝑘1 = 𝑘 = 1000 N/mm and 
𝑐 = 𝑐1 = 1000 N.s/mm. Fig. 5 shows that the Maxwell and Kelvin-Voigt 
models show a frequency dependency of the 𝐿𝐹 similar to a power func-
tion, with a monotone decrease in the case of the Maxwell model and 
a monotone increase in the case of the Kelvin-Voigt model. In contrast, 
the dynamic stiffness of the Maxwell model |𝑘∗| shows a frequency de-
pendency similar to a power function until reaching a specific value of 
the frequency, 𝑓 = 𝑘

2𝜋𝑐 named as cutoff frequency, where monotone in-
crease finishes in the specific value of the spring 𝑘. In the case of the 
Kelvin-Voigt model, there is an opposite behavior: a constant value of |𝑘∗| = 𝑘 up to the proximity of 𝑓 and, after that, a monotone increase 
with a power function with the same power coefficient as the Maxwell 
model.

Zener model shows, as an approach, a combined behavior of the 
Maxwell and Kelvin-Voigt models. 𝐿𝐹 shows the same behavior as the 
Kelvin-Voigt model until approaching the cutoff frequency 𝑓 , where 
power dependency changes until reaching the power of the Maxwell 
model. In this viscoelastic model, |𝑘∗| is limited to a range between 𝑘0
and 𝑘0 + 𝑘1, centering the transition between these two values in the 
proximity of the cutoff frequency.

Fig. 5 shows with double arrows how the coefficients of each vis-
coelastic model modify the curves that relate |𝑘∗| and 𝐿𝐹 to the fre-
quency 𝑓 . The color of each arrow indicates the curve to which it is 
related. The symbol or symbols near each arrow indicate the coefficient 
that generates the specific change in the curve. Finally, the double ar-
row indicates the direction of the translation produced by each change. 
In Fig. 5b, there is a specific symbol (a filled circle) that indicates no 
changes in the curve. In the case of |𝑘∗| of the conventional Zener 
model, 𝑘’s coefficients near the horizontal lines indicate the coefficients 
that affect the vertical position of each horizontal line. The alteration 
of any coefficient in the Maxwell and Kelvin-Voigt models only gen-

erates the translation of the curves in a log-log representation. Zener 
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Fig. 4. Conventional viscoelastic models: (a) Maxwell model, (b) Kelvin-Voigt model, and (c) Zener model [28].

Fig. 5. Comparison of the mechanical response of a Maxwell model (𝑘 = 1000 N/mm; 𝑐 = 1000 N.s/mm), a Kelvin-Voigt model (𝑘 = 1000 N/mm; 𝑐 = 1000 N.s/mm), 
and a Zener model (𝑘0 = 1000 N/mm; 𝑘1 = 1000 N/mm; 𝑐1 = 1000 N.s/mm); (a) absolute value of the dynamic stiffness, and (b) loss factor according to the formulation 
presented in Fig. 4.
model shows a similar behavior, except for |𝑘∗| where a change in 𝑘’s 
coefficients modulates the vertical position of the horizontal lines, with 
no significant changes in the first derivatives used to connect the two 
horizontal levels. A proportional change of all the coefficients of the 
evaluated models (𝑘 ∝ 𝑐 in the case of Maxwell and Kelvin-Voigt mod-
els and 𝑘0 ∝ 𝑘1 ∝ 𝑐1 in the case of the Zener model) generates a vertical 
translation of the curves in the case of |𝑘∗| and no changes in the case 
of 𝐿𝐹 . Although the conventional Zener model is the one that best 
represents the viscoelastic behavior, it presents significant limitations 
in approaching a real viscoelastic material in the frequency domain, 
because the scaling of the curves in a specific direction in a log-log 
representation is clearly limited. To overcome these weaknesses, a com-
bination of Maxwell models can be connected in parallel to the Zener 
model, thus leading to the Maxwell-Wiechert model [29]. Each new 
Maxwell branch generates a new cutoff frequency, in the representa-
tion of |𝑘∗| and 𝐿𝐹 , with new 𝑘 steps in the case of |𝑘∗|, and new peaks 
in the case of 𝐿𝐹 at each new cutoff frequency. In addition, the use 
of more sophisticated elements, such as springpot elements, allows for 
representing the frequency dependence of the viscoelastic material with 
more flexibility and a minimum number of parameters [30–32].

Springpot elements are linear elements that use fractional deriva-
tives in their constitutive equation (see equation (3)), with two coeffi-
cients that define their behavior: 𝑚 is a linear coefficient, and 𝛼 is the 
fractional order of the derivative with a value between 0 and 1. This 
element is commonly used to substitute the dashpot elements of the 
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previously analyzed models. Thus, their constitutive equations change 
to those included in Equation (4). These equations must be solved by 
numerical methods, such as the one based on the Grünwald-Letnikov 
fractional derivative [33–35], which is obtained from the derivative 
definition (see Equation (5)).

𝐹 =𝑚𝐷𝛼 [𝛿] (3)

Fractional Maxwell model: 𝐷𝛼 [𝐹 ] + 𝑘

𝑚
𝐹 = 𝑘𝐷𝛼 [𝛿]

Fractional Kelvin-Voigt model: 𝐹 =𝑚𝐷𝛼 [𝛿] + 𝑘𝛿

Fractional Zener model: 𝐷𝛼 [𝐹 ] +
𝑘1
𝑚1
𝐹 =

(
𝑘0 + 𝑘1

)
𝐷𝛼 [𝛿] +

𝑘0𝑘1
𝑚1

𝛿

(4)

𝐷𝛼 [𝑓 ] = lim
𝑁→∞

(Δ𝑡)−𝛼
𝑁−1∑
𝑗=0

Γ(𝑗 − 𝛼)
Γ(−𝛼)Γ(𝑗 + 1)

𝑓 (𝑡− 𝑗Δ𝑡) (5)

The replacement of dashpot elements with springpot ones intro-
duces one more degree of freedom in the previously analyzed curves of 
conventional viscoelastic models: the order 𝛼 of the derivative. In that 
sense, 𝛼 governs the slope of the straight lines in the log-log representa-
tion of |𝑘∗| and 𝐿𝐹 . The adaptability introduced by this improvement 
has allowed the design of constitutive models, based on the triad of 
springs, dashpots, and springpots, that have shown the capability of 
simulating the viscoelastic behavior of many polymers and biomateri-

als [36].
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Fig. 6. Schematic representation of a fractional Maxwell-Wiechert model with 
two branches.

As stated in this brief review of the viscoelastic models, the most 
flexible one is the fractional Zener model. In that sense, it is necessary to 
design an algorithm to estimate the coefficients of each element of the 
fractional Zener model using the relaxation test. In order to extend the 
capability and flexibility of this algorithm to estimate different material 
behaviors, the constitutive equation used for this work is the Maxwell-
Wiechert model with two branches, which is similar to the fractional 
Zener model but includes one more fractional Maxwell branch in paral-
lel with the fractional Zener model (see Fig. 6). The algorithm simulated 
a fractional Zener model just introducing a null value in the 𝑘2 and 𝑚2
coefficients.

Equation (6) shows the constitutive equation of the fractional 
Maxwell-Wiechert model with two branches, and the estimation of this 
equation is included in Appendix A.

𝑚1𝑚2
𝑘1𝑘2

𝐷𝛼1+𝛼2 [𝐹 ] +
𝑚1
𝑘1
𝐷𝛼1 [𝐹 ] +

𝑚2
𝑘2
𝐷𝛼2 [𝐹 ] + 𝐹 =

=
𝑚1𝑚2
𝑘1𝑘2

(
𝑘0 + 𝑘1 + 𝑘2

)
𝐷𝛼1+𝛼2 [𝛿] +

𝑚1
𝑘1

(
𝑘0 + 𝑘1

)
𝐷𝛼1 [𝛿]+

+
𝑚2
𝑘2

(
𝑘0 + 𝑘2

)
𝐷𝛼2 [𝛿] + 𝑘0𝛿

(6)

3. Numerical solution for the fractional Maxwell-Wiechert 
constitutive equation

As previously described, this investigation aims to use relaxation 
tests in RCBs to extrapolate their behavior at low to moderate frequen-
cies under dynamic harmonic excitations. This extrapolation is made 
by estimating the coefficients of a fractional Zener model from the 
relaxation test and, after that, the obtained fractional Zener model is 
employed to simulate the response at low to moderate frequencies. The 
constitutive differential equation of the fractional Maxwell-Wiechert 
model with two branches (see Equation (6)) is solved numerically 
through the Grünwald-Letnikov method [33–35]. Since the purpose of 
this method is to execute a numerical approach, the Grünwald-Letnikov 
fractional derivative (see Equation (3)) is calculated by limiting the time 
discretization 𝑁 to an integer value, thus leading to a specific step time 
Δ𝑡 obtained from the division of total time used in the experimental 
relaxation test 𝑡𝑓 by the time discretization 𝑁 . Thus, the Grünwald-
Letnikov fractional derivative is equal to the Equation (7), for a time 
𝑖Δ𝑡 with 𝑖 from 1 to 𝑁 .

𝐷𝛼 [𝑓 (𝑖Δ𝑡)] = (Δ𝑡)−𝛼
𝑖−1∑
𝑗=0

[
Γ(𝑗 − 𝛼)

Γ (−𝛼) Γ (𝑗 + 1)
𝑓 (Δ𝑡(𝑖− 𝑗))

]
(7)

In order to emulate an experimental relaxation test, a known and 
imposed displacement 𝛿(𝑡) is applied, and the output function 𝐹 (𝑡) is un-
known, except for the initial value 𝐹 (0) = 0. Equation (7) demonstrates 
that the fractional derivative is a so-called memory function because the 
fractional derivative of function 𝑓 at time 𝑖Δ𝑡 is calculated by calling all 
previous steps of the function 𝑓 . Therefore, the differential equation (6)
can be solved explicitly starting from the initial value at the first time 
step, and generating an equation with a single unknown variable 𝐹 (Δ𝑡). 
Equation (8) shows the combination of equation (7) with the left side 
of equation (6) after the first time step (𝑖 = 1). It shows that there is a 
single unknown variable, 𝐹 (Δ𝑡), on this side of the equation (6) at time 
5

step 𝑖 = 1. Taking into account that the right side of equation (6) only 
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includes the known displacement data, the load 𝐹 (Δ𝑡) can be explicitly 
estimated.

𝑚1𝑚2
𝑘1𝑘2

𝐷𝛼1+𝛼2 [𝐹 ] +
𝑚1
𝑘1
𝐷𝛼1 [𝐹 ] +

𝑚2
𝑘2
𝐷𝛼2 [𝐹 ] + 𝐹 =

=

[
𝑚1𝑚2
𝑘1𝑘2

(Δ𝑡)−𝛼1−𝛼2
(
𝐹 (𝑖Δ𝑡) +

𝑖−1∑
𝑗=1

[
Γ
(
𝑗 − 𝛼1 − 𝛼2

)
Γ
(
−𝛼1 − 𝛼2

)
Γ (𝑗 + 1)

𝐹 (Δ𝑡(𝑖− 𝑗))

])]
+

+

[
𝑚1
𝑘1

(Δ𝑡)−𝛼1
(
𝐹 (𝑖Δ𝑡) +

𝑖−1∑
𝑗=1

[
Γ
(
𝑗 − 𝛼1

)
Γ
(
−𝛼1

)
Γ (𝑗 + 1)

𝐹 (Δ𝑡(𝑖− 𝑗))

])]
+

+

[
𝑚2
𝑘2

(Δ𝑡)−𝛼2
(
𝐹 (𝑖Δ𝑡) +

𝑖−1∑
𝑗=1

[
Γ
(
𝑗 − 𝛼2

)
Γ
(
−𝛼2

)
Γ (𝑗 + 1)

𝐹 (Δ𝑡(𝑖− 𝑗))

])]
+ 𝐹 (𝑖Δ𝑡) =

=
[
𝑚1𝑚2
𝑘1𝑘2

(Δ𝑡)−𝛼1−𝛼2 +
𝑚1
𝑘1

(Δ𝑡)−𝛼1 +
𝑚2
𝑘2

(Δ𝑡)−𝛼2 + 1
]
𝐹 (Δ𝑡)

(8)

After this first step 𝑖 = 1, the combination of the equation (7) with 
the left side of the equation (6) gives the equation (9), where 𝐹 (𝑖Δ𝑡) is 
the only unknown variable because 𝐹 (Δ𝑡(𝑖− 𝑗)) are the previous values 
which are estimated in a previous step. Thus, 𝐹 (𝑖Δ𝑡) is calculated step 
by step until reach 𝑖 =𝑁 .

𝑚1𝑚2
𝑘1𝑘2

𝐷𝛼1+𝛼2 [𝐹 ] +
𝑚1
𝑘1
𝐷𝛼1 [𝐹 ] +

𝑚2
𝑘2
𝐷𝛼2 [𝐹 ] + 𝐹 =

=
[
𝑚1𝑚2
𝑘1𝑘2

(Δ𝑡)−𝛼1−𝛼2 +
𝑚1
𝑘1

(Δ𝑡)−𝛼1 +
𝑚2
𝑘2

(Δ𝑡)−𝛼2 + 1
]
𝐹 (𝑖Δ𝑡)+

+

[
𝑚1𝑚2
𝑘1𝑘2

(Δ𝑡)−𝛼1−𝛼2
(
𝑖−1∑
𝑗=1

[
Γ
(
𝑗 − 𝛼1 − 𝛼2

)
Γ
(
−𝛼1 − 𝛼2

)
Γ(𝑗 + 1)

𝐹 (Δ𝑡(𝑖− 𝑗))

])]
+

+

[
𝑚1
𝑘1

(Δ𝑡)−𝛼1
(
𝑖−1∑
𝑗=1

[
Γ
(
𝑗 − 𝛼1

)
Γ
(
−𝛼1

)
Γ(𝑗 + 1)

𝐹 (Δ𝑡(𝑖− 𝑗))

])]
+

+

[
𝑚2
𝑘2

(Δ𝑡)−𝛼2
(
𝑖−1∑
𝑗=1

[
Γ
(
𝑗 − 𝛼2

)
Γ
(
−𝛼2

)
Γ(𝑗 + 1)

𝐹 (Δ𝑡(𝑖− 𝑗))

])]
(9)

The coefficients 𝑘0, 𝑘1, 𝑘2, 𝑚1, 𝑚2, 𝛼1, and 𝛼2 are obtained from the 
best fitting of the numerically estimated 𝐹𝑛𝑢𝑚(𝑡) and the experimental 
𝐹𝑒𝑥𝑝(𝑡) registered during the relaxation test. The minimization of the 
mean squared error function (see Equation (10)) is the methodology 
used to reach this fitting. The algorithm is designed and implemented 
in Matlab® software.

MSE = 1
𝑁

𝑁∑
𝑖=1

(
𝐹 (𝑖)
𝑒𝑥𝑝 − 𝐹

(𝑖)
𝑛𝑢𝑚

)2
(10)

This numerical procedure needs a sensibility analysis of the dis-
cretization 𝑁 in order to guarantee a minimum error tolerance and, 
in that sense, the most critical point of this procedure is the use of 
the gamma function Γ in the calculation of the fractional derivatives 
of the constitutive equation (6). As an example of this statement, in 
a double-precision floating-point format (float64) the maximum value 
reached for the gamma function is Γ(171) = 7.2574 × 10306. For higher 
values, variable precision must be increased. Thus, representing the ra-
tional function 𝛾 of Γ’s contained in the summation of Equation (7) (see 
equation (11)) for different values of 𝛼 and 𝑗, 𝛾(𝛼, 𝑗) function tends to 
‘NaN’ result (Not a Number) after the critical value 𝑗 = 171, because 
Γ(172) =∞ for float64 variables. In many coding languages, the use of 
the function 𝑔(𝑥) = ln (Γ(𝑥)) increases this capability to very high val-
ues, changing the equation that represents 𝛾(𝛼, 𝑗) to the one included in 
Equation (12).

𝛾 (𝛼, 𝑗) = Γ (𝑗 − 𝛼)
Γ (−𝛼) Γ (𝑗 + 1)

(11)

𝛾 (𝛼, 𝑗) = exp{𝑔(𝑗 − 𝛼) − 𝑔(−𝛼) − 𝑔(𝑗 + 1)} (12)

Fig. 7 represents a sensitivity analysis of |𝑘∗| and 𝐿𝐹 for a con-
ventional Zener model with coefficients 𝑘0 = 1000 N/mm, 𝑘1 = 1000
N/mm, and 𝑐1 = 1000 N.s/mm. First, the analytical solution of the con-
stitutive equation for a conventional Zener model (see Fig. 4 for the 

equation of |𝑘∗| and 𝐿𝐹 versus frequency 𝑓 ) is represented with red 
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Fig. 7. Sensitivity analysis of time discretization 𝑁 in a conventional Zener model (𝑘0 = 1000 N/mm; 𝑘1 = 1000 N/mm; 𝑐1 = 1000 N.s/mm) for (a) the absolute value 
of the dynamic stiffness, and (b) the loss factor.
dashed lines. Next, the constitutive equation is solved according to 
the Grünwald-Letnikov algorithm for the different values of the dis-
cretization 𝑁 . Thus, the colored circles presented in Fig. 7 represent 
the approximation obtained from the algorithm for different values of 
the discretization 𝑁 . For this analysis, the input function is a sinusoidal 
displacement 𝛿(𝑡) = 𝑒𝑖2𝜋𝑓𝑡 with a total time in order to reach 20 cy-
cles in all the evaluated cases. The sense of this number of cycles is 
to reduce the influence of the initial transient behavior originated by 
the initial state (𝛿(0), 𝐹 (0)) = (0, 0). The coefficients introduced in the 
algorithm are: 𝑘0 = 1000 N/mm, 𝑘1 = 1000 N/mm, 𝑚1 = 1000 N.s/mm, 
𝛼1 = 1, 𝑘2 = 0.001 N/mm, and 𝑚2 = 0.001 N.s/mm, and 𝛼2 = 0. Fig. 7
shows that a time discretization of 1000 steps per cycle is enough to 
reach satisfactory results, and the designed algorithm is also validated 
with this sensitivity analysis.

4. Experimental validation

As mentioned in the Introduction section, relaxation tests and dy-
namic harmonic tests are performed in RCBs to verify the capability 
of the fractional Zener model for the estimation of |𝑘∗| and 𝐿𝐹 in a 
range of 5 to 200 Hz (typical frequency range in combustion engines 
in the automotive sector) with a simple relaxation test. Three different 
RCBs manufactured by CMP Automotive company are used in this ex-
perimental validation (see Fig. 8a). These three cases are selected based 
on their range of stiffness and damping capability. Table 1 includes the 
geometry (see Fig. 1a for nomenclature identification) and rubber com-
pound hardness. Bushing B1 is composed of a rubber compound with 
25% natural rubber and a steel insert in the inner diameter. Bushing 
B2 shows a rubber compound with 50% natural rubber but it is manu-
factured with two steel inserts, covering the inner and outer diameters. 
Finally, bushing B3 is composed of a rubber compound with 50% nat-
ural rubber, steel inserts covering the inner and outer diameters, and a 
third steel insert located in the intermediate diameter. Relaxation tests 
are performed according to ISO3384 with a loading step of an imposed 
displacement of 0.5 mm in 6 s, and a relaxation step of 5 min. Dynamic 
harmonic tests are performed according to ISO4664 with a sinusoidal 
imposed displacement of amplitude 𝛿0 = 0.5 mm and a frequency range 
from 5 to 200 Hz, except for the reference with the highest stiffness (ID 
B3) which is limited to a frequency range from 5 to 100 Hz. In all the 
references, the imposed displacement is applied radially. Both testing 
procedures are performed in a Schenck Series 56 servohydraulic testing 
machine. Fig. 8b shows the tool setup for the assembly of the rubber 
bushings in the testing machine. Rubber bushings are held along their 
6

outer and inner diameters in order to transmit the imposed displace-
Table 1

Geometry and hardness of the evaluated rubber bushings.

𝐼𝐷 𝑎 (mm) 𝑏 (mm) 𝑐 (mm) Shore A hardness

B1 38.0 12.1 62.0 70
B2 41.8 13.5 60.2 65
B3 41.1 11.0 42.0 60

ment through the upper and lower arms of the testing machine. No 
preload loading step is applied to the bushings.

Fig. 9 shows the registered load and the imposed displacement of re-
laxation tests for the RCBs, with three specimens for each part number 
or bushing. Each case is labeled with the ID Bx-SNy, where 𝑥 repre-
sents the ID of each part number or bushing type and 𝑦 identifies the 
serial number or individual specimen. Bushings are identified in a se-
quence based on their stiffness, with the softer bushing as ID B1 and the 
stiffest one as ID B3. B1 and B2 cases show dissimilar relaxation curves 
for each serial number, which is a common behavior within the man-
ufacturing process variability of these rubber bushings. Fig. 10 shows 
the absolute value of the dynamic stiffness |𝑘∗| in graphs on the left 
(a, c, and e), and the loss factor 𝐿𝐹 on the right ones (b, d, and e), in 
their relation with frequency 𝑓 . The graphs (a) and (b) in the first row 
represent data for bushing B1; plots (c) and (d) correspond to bush-
ing B2; and plots (e) and (f) are for bushing B3. Markers identify the 
harmonic experimental tests: blue circles for SN1 tests, red quads for 
SN2 tests, and green diamonds for SN3 tests. Solid curves identify the 
frequency dependency of the estimated fractional Zener model whose 
parameters are obtained from the experimental relaxation test. The co-
efficients of these estimated fractional Zener models are included in 
Table 2, with the minimum mean square error (𝑀𝑆𝐸) reached after 
each iterative process. In all the cases, the spring 𝑘1 tends to the max-
imum value of the established upper limit (𝑘1 = 107 N/mm). Thus, the 
iterative process predicts in all cases a fractional Kelvin-Voigt model. 
Although the fractional Zener models approaches the experimental re-
laxation curves accurately, Fig. 10 shows that these specific models, 
extrapolated for higher frequencies, do not emulate the observed be-
havior of dynamic tests. Two possible reasons for this discrepancy are 
presented: (i) reason R1, the relaxation test does not have enough data 
to extrapolate accurately the bushing behavior at low to moderate fre-
quencies; or (ii), reason R2, the selected viscoelastic model does not 
show the same behavior as the real rubber bushings for the strain rate 
range from relaxation tests (very low strain rate) to dynamic tests (low 

to moderate strain rates). Reason R1 is the most critical one because it 
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Fig. 8. (a) RCBs manufactured by CMP Automotive which are used in the experimental validation; (b) assembly of the rubber bushing in the servohydraulic testing 
machine.

Fig. 9. Registered loads and displacement for the relaxation tests.

Table 2

Coefficients of the fractional Zener model obtained from the relaxation tests.

𝐼𝐷 𝑘0 (N/mm) 𝑘1 (N/mm) 𝑚1 (N.s𝛼∕mm) 𝛼1 𝑀𝑆𝐸 (N2)

B1-SN1 2473.2 107 4594.1 0.107 23.0
B1-SN2 5694.6 107 1487.1 0.155 9.6
B1-SN3 4223.2 107 3718.2 0.373 1.0
B2-SN1 4794.4 107 2294.4 0.159 10.9
B2-SN2 5653.4 107 2562.0 0.160 13.2
B2-SN3 6352.5 107 2945.9 0.164 18.2
B3-SN1 9388.8 107 1719.7 0.191 5.4
B3-SN2 9369.1 107 1868.6 0.190 6.7
B3-SN3 9568.1 107 1835.2 0.192 7.2
would mean that the extrapolation procedure based on relaxation tests 
would estimate inaccurate properties.

A verification process is performed in order to demonstrate that the 
discrepancies presented in Fig. 10 are not due to reason R1 and the 
extrapolation procedure presented in this paper has enough data to de-
termine the bushing behavior at low to moderate frequencies. The flow 
diagram presented in Fig. 11 shows the verification procedure steps. 
Firstly, the coefficients of a fractional Zener model are estimated from 
the experimental dynamic harmonic tests rather than from a relaxation 
test. Therefore, the algorithm of the 𝑀𝑆𝐸 that must be minimized is 
modified. Equation (13) shows this new definition, where experimen-
7

tal |𝑘∗| and 𝐿𝐹 are the goals to be approached. The fractional Zener 
model estimated with this procedure is identified as Model 1. Displace-

ment data from the experimental relaxation tests are used as input data 
in the algorithm to simulate the relaxation test with Model 1, obtaining 
the load response of this model. This load-displacement data represents 
the response of Model 1 under a relaxation test. The original algorithm 
with the 𝑀𝑆𝐸 represented in equation (10) is used to estimate the co-

efficients of Model 2 using the load-displacement data obtained from 
Model 1. Dynamic harmonic tests are simulated with this new Model 
2 in order to estimate the complex dynamic stiffness. After this proce-

dure, the experimental complex dynamic stiffness is compared with the 

estimated ones.
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Fig. 10. Absolute value of the dynamic stiffness (a, c, and e) and loss factor (b, d, and f), for bushing 1 (a and b), bushing 2 (c and d), and bushing 3 (e and f). Data 
included in the graphs: (i) the experimental dynamic tests of the RCBs, identified with markers, each one for each serial number (blue circles for SN1, red quads for 
8

SN2, and green diamonds for SN3); and (ii), estimated fractional Zener model from the relaxation tests, identified with solid curves.
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Fig. 11. Flow diagram used to verify the capability of the relaxation test to extrapolate the low-to-moderate frequency behavior of a viscoelastic material.

Fig. 12. Registered loads of the relaxation tests of SN1 cases in comparison with the relaxation curves of the estimated Zener models from the dynamic experimental 
tests.
To conclude, the main purpose of this procedure is to generate a new 
viscoelastic Model 2 based on analytical relaxation data created with 
Model 1, and then calculate a new dynamic stiffness from Model 2. If 
a relaxation test did not have sufficient data to estimate the frequency 
response, the new dynamic stiffness generated with Model 2 should ex-
hibit mismatches with the experimental dynamic stiffness. This would 
indicate that some data is lost in the extrapolation process. In contrast, 
if both stiffnesses are similar, it would mean that relaxation tests have 
sufficient data to apply accurately an extrapolation procedure to esti-
mate the low-to-moderate frequency behavior of viscoelastic materials.

In Fig. 12 the relaxation load curves estimated by Model 1 are rep-
resented by dashed lines and the load curves of the experimental relax-
ation tests are indicated by solid lines. The response of Model 1 shows 
lower stiffness than that from the experimental relaxation tests. These 
significant differences verify that standard commercial rubber bushings 
show a frequency dependency of the dynamic stiffness dissimilar to a 
fractional Zener model behavior when the model is used to simulate be-
haviors from very small deformation rates (relaxation tests) to typical 
dynamic frequencies with high deformation rates (10 to 150 Hz). Thus, 
9

reason R2, which was established previously, is verified.
Fig. 13 shows the comparison between experimental |𝑘∗| and 𝐿𝐹
data and the estimated curves with Model 2. Thus, leading to a very 
good fitting of both properties corresponding to the three bushings. 
Therefore, the relaxation curves contained enough information to esti-
mate the low to moderate frequency response, and the reason R1, which 
was previously stated, was refuted. The main difficulty is to establish an 
analytical viscoelastic model that accurately follows the behavior of real 
materials from very small deformation rates (relaxation tests) to higher 
deformation rates (harmonic dynamic tests).

MSE = 1
𝑛

𝑛∑
𝑖=1

⎡⎢⎢⎣
(
𝐿𝑆

(𝑖)
𝑒𝑥𝑝 −𝐿𝑆

(𝑖)
𝑛𝑢𝑚

𝐿𝑆
(𝑖)
𝑒𝑥𝑝

)2

+

(|𝑘∗|(𝑖)𝑒𝑥𝑝 − |𝑘∗|(𝑖)𝑛𝑢𝑚|𝑘∗|(𝑖)𝑒𝑥𝑝
)2⎤⎥⎥⎦ (13)

5. Conclusions

The aim of this research is to analyze the capability of a relaxation 
test to estimate the frequency response of standard rubber bushings. An 
extrapolation procedure is designed to reach this goal. Firstly, the pa-

rameters of a fractional Zener model are estimated from an experimen-
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Fig. 13. Comparison of the experimental dynamic response of rubber bushings and the dynamic simulation with Model 2; (a) |𝑘∗| and, (b) 𝐿𝐹 .
tal relaxation test. Next, the dynamic stiffness in a frequency range from 
5 to 150 Hz is predicted with this fractional Zener model, and results are 
compared to those obtained experimentally in a servo-hydraulic testing 
machine. This investigation has generated the next conclusions:

i. The fractional Zener model does not show the capability to fol-
low the real behavior of rubber bushings from very low strain rates 
(typical of a relaxation test) to low-to-moderate strain rates (dy-
namic harmonic test).

ii. Relaxation tests have enough data to extrapolate accurately the 
frequency response of a viscoelastic material.

iii. The extrapolation process to estimate the frequency response of 
rubber bushings with relaxation tests needs to explore and design 
analytical viscoelastic models that show the capability to simulate 
the real behavior of rubber bushings from very low strains to mod-
erate strains.

iv. The influence of dependence on the amplitude presented by certain 
elastomers, especially those with carbon fibers (Payne effect), could 
affect the extrapolation process because, in each cycle of a dynamic 
harmonic test, a sweep of strain is carried out until reaching the 
peak amplitudes. However, the relaxation tests subject the bushing 
to the highest value of strain the most of the testing time.

These conclusion remarks open future research related to the next 
points:

i. Design of novel viscoelastic models that follow a similar behavior 
of standard rubber bushings for frequency ranges from very low 
values, with similar deformation rates of a relaxation test, to mod-
erate values, such as higher frequencies of combustion engines. The 
use of these analytical models would allow the application of the 
extrapolation procedure to estimate the frequency response with a 
simple relaxation test.

ii. Analyzing the influence of Payne effect in the extrapolation proce-
dure defined in this investigation.

iii. Extend the extrapolation procedure to higher frequencies, using 
low-to-moderate frequency dynamic harmonic tests to estimate the 
high-frequency response.
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Appendix A. Constitutive equation of the fractional 
Maxwell-Wiechert model

Fig. 6 shows a schematic view of the fractional Maxwell-Wiechert 
viscoelastic model, composed of an elastic spring in parallel with two 
fractional Maxwell branches. The displacement is identified with 𝛿 and 
the displacement of each element included in the Maxwell branches is 
identified as: 𝛿1𝑘 and 𝛿2𝑘, for the displacements of each spring; and, 𝛿1𝑚
and 𝛿2𝑚, for the displacements of each springpot. The total load 𝐹 is 
divided at each branch in the next contributions: 𝐹0 for the branch with 
the single spring, 𝐹1 for the Maxwell branch identified as number 1, 
and 𝐹2 for the Maxwell branch number 2.

The total displacement 𝛿 is equal to the contribution of each ele-
ment of each branch. Applying a fractional derivative gives the relation 
included in equation (A.1).

𝛿 = 𝛿1𝑘 + 𝛿1𝑚
𝛿 = 𝛿2𝑘 + 𝛿2𝑚

}
→

{
𝐷𝛼1𝛿 =𝐷𝛼1𝛿1𝑘 +𝐷𝛼1𝛿1𝑚
𝐷𝛼2𝛿 =𝐷𝛼2𝛿2𝑘 +𝐷𝛼2𝛿2𝑚

(A.1)

The load 𝐹𝑖 of each Maxwell branch 𝑖 is related to the displace-
ment of each elastic spring and each springpot by basic constitutive 
equations. From these equations, the fractional derivatives of the dis-
placement of each element are related to the load of each branch (see 

equation (A.2)).
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𝐹1 = 𝑘1𝛿1𝑘 →𝐷𝛼1𝛿1𝑘 =
1
𝑘1
𝐷𝛼1𝐹1

𝐷𝛼1𝛿1𝑚 =
𝐹1
𝑚1

(A.2)

Equation (A.3) is obtained applying the equation (A.2) into the equa-
tion (A.1).

𝐷𝛼1𝛿 =𝐷𝛼1𝛿1𝑘 +𝐷𝛼1𝛿1𝑚
𝐷𝛼2𝛿 =𝐷𝛼2𝛿2𝑘 +𝐷𝛼2𝛿2𝑚

}
→

{
𝐷𝛼1𝛿 = 1

𝑘1
𝐷𝛼1𝐹1 +

𝐹1
𝑚1

𝐷𝛼2𝛿 = 1
𝑘2
𝐷𝛼2𝐹2 +

𝐹2
𝑚2

(A.3)

The application of the Laplace transform to equation (A.3) estimates 
the equation (A.4).

𝑠𝛼1 [𝛿] = 𝑠𝛼1
𝑘1


[
𝐹1

]
+ 1
𝑚1


[
𝐹1

]
→

[
𝐹1

]
= 𝑠𝛼1

𝑠𝛼1
𝑘1

+ 1
𝑚1

 [𝛿] = 𝑘1𝑚1𝑠
𝛼1

𝑚1𝑠
𝛼1 +𝑘1

 [𝛿]

(A.4)

Laplace transform is also applied to: (i) the relation of the total load 
𝐹 with the load at each branch; and (ii), the relation between the load 
𝐹0 of the branch 0, which includes the single elastic spring, and the 
displacement 𝛿0 of this branch 0 (see equation (A.5)).

𝐹 = 𝐹0 + 𝐹1 + 𝐹2 → [𝐹 ] =
[
𝐹0

]
+

[
𝐹1

]
+

[
𝐹2

]
𝐹0 = 𝑘0𝛿→

[
𝐹0

]
= 𝑘0 [𝛿]

(A.5)

Equation (A.6) is obtained combining equations (A.4) and (A.5).

 [𝐹 ] = 𝑘0 [𝛿] +
𝑘1𝑚1𝑠

𝛼1

𝑚1𝑠
𝛼1 + 𝑘1

 [𝛿] +
𝑘2𝑚2𝑠

𝛼2

𝑚2𝑠
𝛼2 + 𝑘2

 [𝛿] (A.6)

Equation (A.7) is obtained with basic algebraic operations in equa-
tion (A.6).

𝑚1𝑚2𝑠
𝛼1+𝛼2 [𝐹 ] +𝑚1𝑘2𝑠

𝛼1 [𝐹 ] +𝑚2𝑘1𝑠
𝛼2 [𝐹 ] + 𝑘1𝑘2 [𝐹 ] =

=𝑚1𝑚2
(
𝑘0 + 𝑘1 + 𝑘2

)
𝑠𝛼1+𝛼2 [𝛿] + 𝑘2𝑚1

(
𝑘0 + 𝑘1

)
𝑠𝛼1 [𝛿]+

+𝑘1𝑚2
(
𝑘0 + 𝑘2

)
𝑠𝛼2 [𝛿] + 𝑘0𝑘1𝑘2 [𝛿]

(A.7)

The application of the inverse Laplace transform to equation (A.7)
gives the constitutive equation of the fractional Maxwell-Wiechert 
model with two branches (see equation (A.8)).

𝑚1𝑚2
𝑘1𝑘2

𝐷𝛼1+𝛼2 [𝐹 ] +
𝑚1
𝑘1
𝐷𝛼1 [𝐹 ] +

𝑚2
𝑘2
𝐷𝛼2 [𝐹 ] + 𝐹 =

=
𝑚1𝑚2
𝑘1𝑘2

(
𝑘0 + 𝑘1 + 𝑘2

)
𝐷𝛼1+𝛼2 [𝛿] +

𝑚1
𝑘1

(
𝑘0 + 𝑘1

)
𝐷𝛼1 [𝛿]+

+
𝑚2
𝑘2

(
𝑘0 + 𝑘2

)
𝐷𝛼2 [𝛿] + 𝑘0𝛿

(A.8)
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