
Vol.:(0123456789)1 3

Pattern Analysis and Applications (2022) 25:271–283 
https://doi.org/10.1007/s10044-021-01053-0

ORIGINAL ARTICLE

A visual tool for monitoring and detecting anomalies in robot 
performance

Nuño Basurto1   · Carlos Cambra1   · Álvaro Herrero1 

Received: 13 August 2021 / Accepted: 13 December 2021 / Published online: 24 January 2022 
© The Author(s) 2022

Abstract
In robotic systems, both software and hardware components are equally important. However, scant attention has been devoted 
until now in order to detect anomalies/failures affecting the software component of robots while many proposals exist aimed 
at detecting physical anomalies. To bridge this gap, the present paper focuses on the study of anomalies affecting the software 
performance of a robot by using a novel visualization tool. Unsupervised visualization methods from the machine learning 
field are applied in order to upgrade the recently proposed Hybrid Unsupervised Exploratory Plots (HUEPs). Furthermore, 
Curvilinear Component Analysis and t-distributed stochastic neighbor embedding are added to the original HUEPs formu-
lation and comprehensively compared. Furthermore, all the different combinations of HUEPs are validated in a real-life 
scenario. Thanks to this intelligent visualization of robot status, interesting conclusions can be obtained to improve anomaly 
detection in robot performance.

Keywords  Smart robotics · Component-based robot software · Performance monitoring · Anomaly detection · Machine 
learning · Unsupervised visualization · Clustering · Exploratory projection pursuit

1  Introduction

The European Commission identified smart robotics as an 
innovation field that would benefit from the development 
of Key Enabling Technologies (KETs) [1]. Undoubtedly, to 
successfully deploy autonomous robotics systems, further 
innovative digital solutions must be conceived and validated 
in real scenarios. In the past years, plenty of attention has 
been devoted to deploy such robots, with advanced capabili-
ties not only for autonomous operation but also for self-diag-
nosis. However, the demands of enhanced systems also lead 

to a significant increase in the complexity of them, while 
reliability and robustness are also required. While operating 
in real-world environments, robots fail and analysing these 
failures is a keystone in the road to complete autonomy. Both 
the hardware and software components of robots suffer from 
failures. The former has been widely researched [2, 3] while 
little effort has been devoted to the latter so far  [4]. In order 
to bridge this gap, a new tool is introduced in this novel 
work, based on previously proposed Hybrid Unsupervised 
Exploratory Plots (HUEPs) [5], to successfully monitor the 
performance of software components within a robot while 
supporting the detection of software anomalies.

Detection of anomalies can be defined as, once expected 
behavior is known, finding certain patterns in the data that 
do not conform to it [6]. In order to do that, many propos-
als based on supervised Machine Learning (ML) are been 
successfully applied to anomaly detection in a wide variety 
of industrial problems, ranging from service elevator [7] to 
solar panels [8] or Unmanned Aerial Vehicles [9], among 
others. From a complementary perspective, present work 
investigates the use of unsupervised ML techniques to 
exploratory study performance in order to know more about 
anomaly datasets. As a result of the obtained knowledge, the 
application of some other supervised ML methods may be 
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enhanced, being out of the scope of the present proposal. 
According to recent and comprehensive methodologies for 
cost-efficiently monitoring the Industry 4.0, “exploratory 
data analysis must be first done, comprising techniques such 
as descriptive statistics, dimensionality reduction and clus-
tering, among others” [10]. Coherently, a projection exten-
sion of HUEPs is proposed as a novel combination of some 
of the above mentioned techniques; more precisely Curvilin-
ear Component Analysis (CCA) and t-Distributed Stochastic 
Neighbor Embedding (t-SNE) are incorporated to HUEPs 
due to their non-linearity. Furthermore, such visualization 
techniques are applied for the first time to the monitoring of 
robot performance, up to the authors knowledge.

The rest of this paper is organized as follows: related 
work is discussed in Sect. 2, the extended HUEPs formula-
tion is described in Sect. 3 while Sect. 4 presents the the 
real-life case and the associated data that are analysed. The 
results obtained by the proposed solution are presented in 
Sect. 5 and the main conclusions are discussed in Sect. 6.

2 � Related work

The development that robotic systems are currently undergo-
ing is huge, with different performance improvements, and 
several challenges related to people [11]. Likewise, this evo-
lution is being carried out together with the robot software, 
where different lines of research are still open [12]. One of 
such unsolved problems is the detection of anomalies affect-
ing the software of robots.

To contribute in this field, the first open dataset [13] was 
released and is presented in [14]. This dataset ( described 
in the Sect. 4) contains data about performance indicators 
of a robotic system, comprising both “normal” and anoma-
lous states. It is analyzed in the present work and has been 
previously studied from a supervised ML perspective. Sup-
port Vector Machines (SVMs) were applied by the dataset 
authors [15] in order to automatically detect the software 
anomalies. In the doctoral dissertation [16] associated to 
this dataset, that compiles results from all the previous 
publications by these authors, two different approaches are 
described. On the one hand, the previously-mentioned appli-
cation of supervised ML for detecting anomalies and con-
sequently activating automatic reactions in execution time, 
based on the use of component resources. On the other hand, 
a set of tools has been developed to understand and systema-
tize resource control under the frame of the robotic system 
itself. Under the same perspective, supervised ML has been 
previously applied [17] by the present paper authors, trying 
to improve the classification results by dealing with missing 
values and applying data balancing techniques.

Differentiating from previous work, unsupervised 
methods are not proposed as an initial step for subsequent 

supervised methods aimed at classifying data (normal/
anomalous). The idea behind the present proposal is to apply 
unsupervised ML in isolation (visualization and clustering 
techniques are applied to the same data and then combined) 
to support the monitoring and study of robot performance 
status. Thanks to this improved visualization of high-dimen-
sional data, deep knowledge can be gained about the struc-
ture of anomaly datasets.

In keeping with this idea, authors [18] of the present 
paper have previously explored the application of dimen-
sionality-reduction techniques for the visualization of similar 
data. However, in this previous work exploratory techniques 
were not combined with any clustering method, as it is pro-
posed in the present work.

As previously stated, scant attention has been devoted 
so far to the detection of anomalies affecting the software 
of robots. Furthermore, there is no previous work studying 
the application of unsupervised ML methods for visualising 
and monitoring such anomalies. The most similar previous 
work that is worth mentioning is [19]. Authors of this paper 
propose the use of unsupervised learning for the detection 
of anomalies in robots using a Long Short-Term Memory 
(LSTM) joint auto-encoder. Satisfactory results have been 
obtained when applying it to data coming from the sensors 
integrated in the robot. On the other hand, in [20] the use of 
sliding-window convolutional variational variational autoen-
coder is proposed to perform real-time anomaly detection in 
an industrial robot. It is applied as a tool that helps in the 
maintenance of robotics systems, by dealing with multivari-
ate time series problems. A more recent research [21] pro-
poses the application of Bayesian networks. As they allow to 
interrelate different heterogeneous data sources, are applied 
to perceive anomalies in mobile robots and to recover from 
them.

3 � Novel visualization techniques for HUEPs

Hybrid Unsupervised Exploratory Plots (HUEPs) [5] have 
been recently proposed as a new visualization tool to com-
bine the outputs of Exploratory Projection Pursuit (EPP) 
and Clustering methods in a novel and informative way. To 
address the well-know “curse of dimensionality” challenge 
and advancing in descriptive data analysis, both kind of 
methods are independently applied and their outputs com-
bined in a new way. More precisely, 3 EPP methods (mainly 
based on Artificial Neural Networks) were proposed, namely 
Principal Component Analysis (PCA), Maximum Likeli-
hood Hebbian Learning (MLHL), and Cooperative MLHL 
(CMLHL).

The output obtained by these 3 EPP methods is a bidi-
mensional vector ( yEPP

1
, yEPP

2
 ) for each data in the origi-

nal input space ( xn ). On the other hand, the output of the 
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clustering method is a scalar ( yc ). These three items are 
then combined in a 3D vector ( y1, y2, y3 ) that is visualized 
in a scatter plot, together with some information for the 
glyph metaphor ( xi).

Going one step further, a visualization extension is pro-
posed in the present paper, to improve the original HUEP 
formulation. Initially, HUEPs were conceived as a new 
way of intuitively visualizing data by applying one parti-
tional (k-means) or one hierarchical (agglomerative) clus-
tering method together with one EPP method. Advancing 
this initial proposal, complementary visualization methods 
are proposed in the present work, as shown in Fig. 1 (origi-
nal formulation in grey and present visualization extension 
in blue).

Visualization is a challenging task, specially when 
analyzing high-dimensional and real-life data as the one 
in present research. To address this issue, the proposed 
visualization extension comprises the following methods, 
that are applied and validated under the frame of HUEPs 
for the first time: t-SNE and CCA. These methods are now 
considered for this extension as they generate non-linear 
visualizations of data. They are briefly introduced in the 
following subsections and further details about them can 
be found in the given references.

3.1 � Curvilinear Component Analysis

Curvilinear Component Analysis (CCA) was proposed by 
Demartines and Herault [22] as a self-organizing neural net-
work to find a representation of multidimensional datasets 
by reducing their dimensionality. To do so, an H-dimen-
sional dataset is projected in an R-dimensional map. CCA 
is similar to other nonlinear mapping projection techniques 
such as Sammon’s nonlinear mapping [23]. But it mainly dif-
fers from these other methods in the use of a new cost func-
tion and a greater courage when it comes to represent. It is 
proposed as an improvement of Sammon’s mapping because 
the latter cannot reproduce all distances. CCA does this by 
reproducing first the nearest and then the farthest distances. 
The error function used by CCA is the following one.

3.2 � t‑distributed stochastic neighbor embedding

t-Distributed Stochastic Neighbor Embedding (t-SNE) was 
proposed by Van der Maaten and Hinton [24]. It is a vari-
ation of Stochastic Neighbor Embedding [25] producing a 
better visualization of high-dimensional data while reducing 

(1)ECCA =

N
∑

i,j=1

(dn
i,j
− (d

p

i,j
)2F

�
(d

p
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)

Fig. 1   HUEP novel formulation 
comprising the proposed Visu-
alization Extension. Adapted 
from [5]
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the concentration of points at the same place in the map. 
This visualization method is able to take into account the 
concentration of global structures, revealing at the same 
time the presence of different clusters. One of the tricks 
used by t-SNE is the “early compression”, that is aimed at 
keeping the points together at the beginning of the compres-
sion, as shorter distance between the points would ease for 
the clusters to differentiate between them. It tries to reduce 
the divergence between two distributions, the first of which 
measures the similarities between the input objects in pairs, 
while the second measures the similarities in a low dimen-
sionality in pairs of the points. It differs from PCA in that 
this visualization technique is non-linear, as CCA. Its opera-
tion can be summarized as follows; first it creates a prob-
ability distribution between the different points and their 
neighbors. Then, t-SNE creates a visualization with a lower 
dimensionality as a result of that distribution.

4 � Analysing performance anomalies 
in robots

As previously mentioned, the present paper proposes HUEPs 
to study performance anomalies in the middleware of a 
component-based robot. This kind of anomalies affecting 
robot software can be divided into several categories. Some 
of them may not cause the robot stop working, but lead to 
performance deterioration and cause delays.

To address this problem, an open dataset [13] is analysed 
in the present paper. This dataset was gathered by differ-
ent researchers at the University of Bielefeld (Germany), 
for which different metrics of a robot were recorded dur-
ing a test run on several times. This robot is based on a 
model developed by Omron Adept Technologies (former 
MobileRobots).

The robotic system under study has different components 
added to the base, which is why it is called a component-
based robot. These components may have been developed 
by different companies and integrated, forming the robotic 
system. Some of the different components are: sensors and 
cameras capable of performing object recognition, voice 

recognition or person tracking, actuators responsible for 
navigation or translation of sentences from text to voice, and 
an arm that performs human-like movements, along with a 
grip capable of lifting objects. All the information obtained 
from the different sensors together with the actions to be 
performed by the actuators are integrated thanks to the RSB 
Middleware [26] that provides communication among the 
components. The coordination of the system is carried out 
by the BonSAI Framework allowing the system to behave 
as a finite state machine. A graphical summary of the robot 
structure, comprising these elements, can be seen in Fig. 2.

The authors of the dataset provide documents in which 
they indicate what are the moments in which the anomalies 
are induced and on which components. As a result, the data 
instances are correctly and completely labelled. They also 
comment on the time instants in which unplanned anomalies 
occur in the system.

There are several anomalies that have been induced 
and affect one or several components. ArmServerAlgo, 
legDetectorSkippable, objectBuilderSkippable, clafuSleep, 
pocketSphinxLeak, btlAngleAlgo, bonsaiParticipantLeak, 
bonsaiTalkTimeout, and facerecSkippable just affect one 
component. ClockShift affects four components and Spread-
Latency affects all components. In the present research two 
anomalies have been chosen (armSeverAlgo and legDetec-
torSkippable), according to the investigations of the crea-
tors of the dataset [15]. The first one (armSeverAlgo) got 
the worst results when evaluating the dataset by means of 
SVM, while for the second one (legDetectorSkippable), very 
accurate classification values were obtained. ArmServer-
Algo (hereinafter referred as A1) affects the armcontrol 
component, that supervises the movement of the mechani-
cal arm as well as the movement of the gripper. The anomaly 
causes the arm to make a series of extra moves to carry 
out an action, which penalises the performance but does not 
prevent the task from being carried out successfully. The 
anomaly legDetectorSkippable (hereinafter referred as A2) 
affects the legdetector component, that is in charge of detect-
ing people’s legs for recognizing the presence of human 
beings. Similarly to what happened with the armServerAlgo 
anomaly, several unnecessary actions were performed, thus 

Fig. 2   Overview of the robot 
system architecture. Adapted 
from [14]
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affecting the performance but not preventing the task to be 
completed.

When information was gathered from the robot, it was 
performing different tasks in a certain order. The different 
tasks involved the components discussed above. Experi-
ments were repeated a total of 71 times; that is the reason 
why the dataset comprises 71 trials. Not all of them are used 
in the present experimentation because some of them have 
undesired anomalies, whose origin is not known.

For each one of these 71 trials, all the information gath-
ered from each one of the components is available. The 
dataset contains the information about when and which 
anomalies were induced together with data from several data 
sources. The first one of these data sources are the coun-
ters, that export the performance counters of each one of 
the robot components on a regular basis (less than a second). 
The information from this source includes data such as the 
number of active processor threads or the amount of infor-
mation sent and received.

The second source are the events, those that were sent 
between the system bus and the user code. This information 
tells which are the relevant events in the component, includ-
ing the sending and receiving address or the information 
size. For every second of execution of the trial there can be 
multiple instances that appear in this dataset, being approxi-
mately 60 times larger than those observed in counters. This 
is why the third of the data sources (features) is required. It 
combines events with performance counters in the counters 
time instants.The events presented in features are the last 
ones received as well as the averages for different temporal 
moments. This causes the features to be the dataset with the 
highest dimensionality. The authors published more detailed 
information on the dataset as well as the source files in [13]. 
From these three sources of data, features and counters are 
analyzed in the present work as in previous experiments they 
were identified as those that implied best results [27].

Due to length limitation, results from all the anomalies 
and trials can not be included in the present paper. In order 
to evaluate the proposed HUEPs extension under different 
circumstances, experiments were conducted including, for 
each one of the two analysed anomalies (previously dis-
cussed) two variants: only one trial and all the trials. The 
motivation for that is to check whether the HUEP visualiza-
tions are equally useful depending on the amount of trials 
(and data instances) to be depicted. Hence, trials for these 2 
anomalies had to be selected. Among all the trials containing 
examples of the A1 and A2 anomalies, only one was chosen 
for each case. Firstly, the smallest trial (lowest number of 
data instances) was selected. Secondly, for those trials with 
the same number of occurrences, the one with lowest bal-
ance ratio between the normal and the anomaly class (the 
most unbalanced) was selected. As a result, the proposed 
HUEPs extension is validated both on small and unbalanced 

datasets. One-trial datasets have been selected in the present 
paper to check the ability of extended HUEPs to visually 
depict the structure of small datasets. On the contrary, all-
trial datasets have been selected as they contain a big amount 
of data.

As previously studied [27], the trials within this dataset 
contain missing values (MV), that must be pre-processed 
before applying most ML methods. In the present paper, MV 
were removed according to a 0% rate. Accordingly, all the 
features containing any MV were removed from the dataset. 
As a result, datasets to be analysed in the present paper have 
a different dimensionality.

Figures about some characteristics of the employed data-
sets (one and all trials) are shown in Table 1.

In addition to the visualization extension that is above 
described, the application of HUEPs to the present problem 
unveils another novelty. The additional information that is 
provided to the HUEPs consist now on the class information 
for each data. Consequently, the glyph metaphor is used to 
depict the data according to the class (normal versus anoma-
lous states) it belongs to. This way, hybridization in HUEPs 
is maximized as on the top of the combination of unsuper-
vised methods, class information is used to better understand 
the patterns associated to anomalous states of the robot soft-
ware. Thanks to it, the structure of the dataset and the results 
of other ML techniques can be easily understood.

5 � Experiments and obtained results

In this section, the advanced visualizations obtained by 
applying HUEPs (original and extended formulations) 
are shown. For the visualization and clustering methods, 
parameters have been tuned according to previous recom-
mendations [28, 29]. As previously mentioned, the glyph 
metaphor is applied by using the class (normal versus 
anomalous) information, once the data are located in the 
3D output space. Accordingly, normal data are depicted as 
red stars while anomalous data are depicted as black circles. 
On the other hand, figures in this section show 3D visualiza-
tions; y1, y2 and y3, (discussed in Sect. 3 and observable in 

Table 1   Characteristics of the datasets analyzed in present paper

Dataset Trials Dimen-
sional-
ity

Normal data Anomalous 
data

Total data

A1Trial41 1 87 500 (86.2%) 80 (13.8%) 580
A2Trial36 1 23 638 (88.9%) 80 (11.1%) 718
A1AllTrials 10 42 5773 

(84.2%)
1032 

(15.2%)
6805

A2AllTrials 12 21 6628 
(14.5%)

1128 
(85.5%)

7756
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image 1), are represented in the following figures. The first 
two are 2D coordinates of each data sample, while y3 is the 
assigned cluster.

As there are many different visualizations obtained by 
combining all the EPP (PCA, MLHL, CMLHL, CCA, and 
t-SNE) and clustering (k-means and Agglomerative) meth-
ods for each one of the datasets and parameter values, only 
some of them can be included in the present paper. Visuali-
zations have been selected according to different comparison 
criterion and are shown in the following subsections. Firstly, 
results for the A1 anomaly are shown in Sect. 5.1 while 
results for the A2 anomaly are shown in Sect. 5.2, compris-
ing visualizations of both one and all-trial datasets each.

5.1 � A1 anomaly results

In order to compare the visualizations for the A1 anomaly 
(A1Trial41 and A1AllTrials datasets) discussed above, only 
some of them are shown in the present subsection for each 
one of the datasets. These HUEPs consist of the combination 
of the same clustering method (Agglomerative) and cluster 

number (5), together with 4 different visualization methods, 
namely PCA, MLHL, t-SNE, and CCA.

HUEPs visualizations of the one-trial (A1Trial41) dataset 
are shown in Fig. 3. Before analyzing these visualizations, 
it is worth mentioning that in this dataset all the anomalous 
instances (80) are the same. That is, for all the features in 
the dataset, all of them took the same value at the different 
times when data were captured. This phenomenon can be 
observed in Fig. 3 as for most of the visualization meth-
ods (PCA, MLHL, and CCA) anomalous instances overlap 
and are depicted as a single data, containing not only the 
anomalies but also normal data. However, it is not the same 
in the case of the t-SNE visualization, where anomalies do 
not overlap. Additionally, all these anomalous instances are 
grouped together. They are depicted as a group in the right-
bottom corner of Fig. 3c). This way, it is easily seen that the 
group comprises both anomalous and normal data.

For comparison purposes, 3D visualizations obtained by 
the same techniques are shown in Fig. 4. It means that the 
three components of each data sample are only calculated by 
the visualization technique. That it, no clustering results are 

Fig. 3   HUEP visualizations for A1Trial41 dataset. Agglomerative with 5 clusters + projection techniques. a PCA, b MLHL, c t-SNE, and d 
CCA​
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combined but the glyph metaphor is applied (differentiating 
between normal and anomalous data).

The 3D visualizations are quite similar to those obtained 
by HUEPs. Anomalous instances overlap except for the 
t-SNE visualization. Furthermore, data are not clearly 
grouped in the case of the 3D PCA and t-SNE visualizations. 
It is worth noting that in the case of CCA, the 3D visualiza-
tion is almost useless as there is only one group containing 
all the data and the structure of the dataset is not revealed 
at all. In the 3D visualizations, data groups are less clearly 
defined that in the corresponding HUEPs. This way, it is 
proved one of the contributions of HUEPs, that is reinforced 
thanks to the novel visualizations techniques (t-SNE in this 
dataset): the representation capability of the visualization 
techniques is improved by adding the clustering information.

Similarly to the one-trial dataset, some visualizations 
of HUEPs are shown for the all-trial (A1AllTrials) data-
set in Fig. 5. For a fair comparison with the one-trial visu-
alizations, the same clustering method (Agglomerative) is 
applied and together with 4 different visualization methods, 
namely PCA, CMLHL, t-SNE, and CCA. In this case, a 
higher number of clusters (10) is set in order to check the 
ability of HUEPs to depict such results.

It can be seen in Fig. 5 that a high number of groups 
in the clustering causes poor visualizations where groups 
can be hardly identified and normal/anomalous data are not 
clearly separated. The worst visualization is obtained by 
CCA as there is no data grouping at all.

5.2 � A2 anomaly results

As it has been previously explained, HUEPs are also applied 
to the A2 anomaly (A2Trial36 and A2AllTrials) datasets. 
Firstly, HUEP visualizations for the one-trial dataset are 
shown. Each one of these figures shows the HUEPs obtained 
by combining the output of the new visualization techniques 
proposed in this research (CCA and t-SNE), together with 
the clustering techniques previously mentioned: k-means 
and Agglomerative. This way, a direct comparison between 
the two novel techniques is provided for this dataset. Their 
visualization performance is also validated in conjunction 
with the clustering techniques by using a different number 
of clusters.

In order to compare the performance of HUEPS, execu-
tions have been performed with different number of clus-
ters: 3 and 9. 3 was chosen as a relatively small number of 

Fig. 4   3D visualizations for A1Trial41 dataset: a PCA, b MLHL, c t-SNE, and d CCA​
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clusters while 9 was chosen as a large one, although a larger 
value (10) has been used to obtain the visualization of the 
all-trials dataset. Thanks to it, the visualization ability of 
extended HUEPs is validated for clustering results compris-
ing both low and high numbers of clusters.

HUEP visualizations of the one-trial (A2Trial36) data-
set with 3 clusters are shown in Fig. 6, where the dataset 
structure is clearly depicted in all cases. The group con-
taining the anomalous data is more sparsely depicted by 
CCA while t-SNE tends to concentrate the data in a group 
of small size. However, it is worth highlighting that in 
the case of t-SNE (c and d), the anomalous data is almost 
completely isolated from the normal one. Similarly, the 
clustering techniques are not able to split all normal and 
anomalous data: in the case of the Agglomerative cluster-
ing technique (b and d), there are two anomalous instances 
grouped with the normal ones. In the case of CCA (a and 

b) these instances are closer to the rest of the anomalous 
instances. Thanks to this visualization, these anomalous 
data have been further studied. In a more detailed analysis, 
it has been discovered that they are data instances associ-
ated to those moments of time in which the induction of 
anomalies begins and ends. Thanks to the HUEP visualiza-
tion, such situations can be identified, leading to a subse-
quent improvement on the anomaly detection. All in all, it 
can be said that HUEPs extended by the new visualization 
techniques are able to depict this dataset in a way that its 
structure is clearly revealed. As a result, anomalous data 
can be clearly identified and split from normal data.

In the HUEP obtained with 9 clusters (Fig. 7), it can 
be seen how this visualization is less clear than that with 
a smaller number of clusters (Fig. 6). As in this previ-
ous figure, it can be observed that t-SNE (c and d) more 
clearly reveals the structure of the dataset as groups are 

Fig. 5   HUEP visualizations for A1AllTrials dataset. Agglomerative witch 10 clusters + projection techniques. a PCA, b CMLHL, c t-SNE, and 
d CCA​
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shown in a compact way. CCA (a and b) does not generate 
visualizations as compact as those obtained for a reduced 
number (3) of clusters. When visualizing same data with a 
higher number of clusters there is a more confusing sepa-
ration between data classes. One common characteristic of 
visualizations in Fig. 7 is that the normal class is split in 
a greater number of clusters while the anomalous data are 
kept in only one group. This group is much more concen-
trated in the case of t-SNE. By taking this into account, it 
can be concluded that increasing the number of clusters 
does not always mean a better visualization.

Finally, HUEPs are shown for all the trials of A2 anomaly 
(A2AllTrials dataset) in Fig. 8. These visualizations have 
been obtained by combining the Agglomerative cluster-
ing with the PCA, MLHL, t-SNE, and CCA visualization 

methods. In this case, a reduced number of clusters (4) has 
been used.

In this case, the visualizations are very similar to those 
obtained for the one-trial dataset of the same anomaly 
(A2Trial36). However, Fig.  8 shows the visualizations 
obtained by two other techniques: MLHL (b) and PCA (a). 
Although they have achieved a good separation of clusters, 
in the case of MLHL the instances of the different classes 
overlap, that does not happen with any of the other visualiza-
tion techniques. As for PCA, it achieves a very good separa-
tion although slightly worse than that obtained by t-SNE (c). 
Finally, CCA (d) generates a good separation of clusters, 
similar to the one previously observed in Figs. 6 and 7 but 
slightly worse. All in all, it can be said that the separation 
by clusters is quite good, as it happened with the dataset of 

Fig. 6   HUEP visualizations for A2Trial36 dataset. K-means and Agglomerative with 3 clusters + projection techniques. a CCA + k-means, b 
CCA + Agglomerative, c t-SNE + k-means, and d t-SNE + Agglomerative
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a single trial (A2Trial36). It can be said that the extended 
HUEPs can be successfully applied to a large dataset (A2Al-
lTrials dataset is the largest one in the present study).

As in the case of the previous anomaly, the 3D visualiza-
tions of A2 by the different techniques are shown in Fig. 9. 
They are slightly different from the HUEPs, in a different 
way to what happened with the A1 dataset (see Sect. 5.1). 
The 3D PCA (a) visualization is quite similar to what can 
be observed in the corresponding HUEP (Fig. 8a), where 
the two classes are separated but closely located in the out-
put space. Visualization is also quite similar in the case of 
t-SNE (c), showing a good separation of classes. However, 
groups containing normal data are more clearly separated in 
the case of the HUEP visualization. The biggest differences 
can be observed in the cases of MLHL and CCA. The 3D 

visualizations are not revealing; groups can not be identified 
and classes (normal/anomalous) are mixed up.

It can be concluded that HUEPs provide with visualiza-
tions where the structure of datasets can be observed in a 
more clear way that in the case of visualizations obtained by 
other methods. By analysing the results of the present study, 
classes have been more clearly grouped in the case of the A2 
anomaly than in the case of the A1 one.

6 � Conclusions and future work

To monitor the performance of the software components 
within a robot, a visualization extension of HUEPs is pro-
posed and validated in the present paper. More precisely, 

Fig. 7   HUEP visualizations for A2Trial36 dataset. K-means and agglomerative with 9 clusters + projection techniques. a CCA + k-means, b 
CCA + Agglomerative, c t-SNE + k-means, and d t-SNE + Agglomerative
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CCA and t-SNE are introduced in the HUEPs formulation 
to benchmark such methods against the originally proposed 
ones (PCA, MLHL, and CMLHL). A comprehensive experi-
mental study has been carried out to validate the proposed 
extension, comprising experiments on all the different meth-
ods, parameters and datasets. As a result, the proposed visu-
alization methods have been applied to the different (small/
large and balanced/unbalanced) datasets when applying dif-
ferent visualization techniques as well as clustering ones. 
Furthermore, results are compared with a varying number 
of clusters.

From a general perspective, the experimental results 
show that HUEPs generated by the new visualization meth-
ods can be considered more useful than those obtained by 

the original methods. It is worth noting that among all the 
methods that are applied for the first time, the t-SNE out-
performs the other one, contributing to more informative 
and intuitive visualizations of normal/anomalous states. 
This is mainly given to the ability of such method to iso-
late data instances from one class. It must be said that, 
in general terms, in order to select the most appropriate 
visualizations technique, as well as the optimal number of 
clusters, a benchmark study must be conducted on each 
dataset. There is not a visualization technique that clearly 
outperforms the other one in all cases.

Regarding the dataset size, it can be said that HUEP 
visualizations are better for smaller datasets (one-trial). In 
the visualizations of these datasets data are more clearly 

Fig. 8   HUEP visualizations for A2AllTrials dataset. Agglomerative with 4 clusters + visualization techniques. a PCA, b MLHL, c t-SNE, and d 
CCA​
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grouped and projections are more sparse. In an opposite 
way, datasets with a larger size (all-trials) are visualized in 
a less informative way, although good results have also been 
obtained for such datasets.

As a follow-up of this research line, authors aim at test-
ing new clustering methods to be applied under the frame of 
HUEPs. Similarly, new ways of combining different sources 
of information in the same display could also be investigated 
in order to improve HUEP visualizations.

Funding  Open Access funding provided thanks to the CRUE-CSIC 
agreement with Springer Nature.

Open Access  This article is licensed under a Creative Commons Attri-
bution 4.0 International License, which permits use, sharing, adapta-
tion, distribution and reproduction in any medium or format, as long 
as you give appropriate credit to the original author(s) and the source, 
provide a link to the Creative Commons licence, and indicate if changes 
were made. The images or other third party material in this article are 
included in the article's Creative Commons licence, unless indicated 
otherwise in a credit line to the material. If material is not included in 
the article's Creative Commons licence and your intended use is not 

permitted by statutory regulation or exceeds the permitted use, you will 
need to obtain permission directly from the copyright holder. To view a 
copy of this licence, visit http://​creat​iveco​mmons.​org/​licen​ses/​by/4.​0/.

References

	 1.	 Commission E (2014) Study on cross-cutting KETs (Ro-cKETs) 
. https://​ec.​europa.​eu/​growth/​indus​try/​policy/​key-​enabl​ing-​techn​
ologi​es/​eu-​actio​ns/​ro-​ckets_​en

	 2.	 Khaldi B, Harrou F, Cherif F, Sun Y (2017) Monitoring a robot 
swarm using a data-driven fault detection approach. Robot 
Autonom Syst 97:193–203. https://​doi.​org/​10.​1016/j.​robot.​2017.​
06.​002

	 3.	 Park D, Kim H, Kemp CC (2019) Multimodal anomaly detection 
for assistive robots. Autonom Robots 43(3):611–629. https://​doi.​
org/​10.​1007/​s10514-​018-​9733-6

	 4.	 Khalastchi E, Kalech M (2018) On fault detection and diagnosis 
in robotic systems. ACM Comput Surv 51(1):1–24. https://​doi.​
org/​10.​1145/​31463​89

	 5.	 Herrero A, Jimenez A, Bayraktar S (2019) Hybrid unsupervised 
exploratory plots: a case study of analysing foreign direct invest-
ment. Complexity. https://​doi.​org/​10.​1155/​2019/​62710​17

	 6.	 Xu X, Liu H, Yao M (2019) Recent progress of anomaly detection. 
Complexity. https://​doi.​org/​10.​1155/​2019/​26863​78

Fig. 9   3D visualizations for A1Trial41 dataset. a PCA, b MLHL, c t-SNE, and d CCA​

http://creativecommons.org/licenses/by/4.0/
https://ec.europa.eu/growth/industry/policy/key-enabling-technologies/eu-actions/ro-ckets_en
https://ec.europa.eu/growth/industry/policy/key-enabling-technologies/eu-actions/ro-ckets_en
https://doi.org/10.1016/j.robot.2017.06.002
https://doi.org/10.1016/j.robot.2017.06.002
https://doi.org/10.1007/s10514-018-9733-6
https://doi.org/10.1007/s10514-018-9733-6
https://doi.org/10.1145/3146389
https://doi.org/10.1145/3146389
https://doi.org/10.1155/2019/6271017
https://doi.org/10.1155/2019/2686378


283Pattern Analysis and Applications (2022) 25:271–283	

1 3

	 7.	 Canizo M, Triguero I, Conde A, Onieva E (2019) Multi-head 
cnn-rnn for multi-time series anomaly detection: an industrial 
case study. Neurocomputing 363:246–260. https://​doi.​org/​10.​
1016/j.​neucom.​2019.​07.​034

	 8.	 Murtada WA, Omran EA (2019) Robust anomaly identification 
algorithm for noisy signals: spacecraft solar panels model. Neu-
ral Comput Appl. https://​doi.​org/​10.​1007/​s00521-​019-​04407-2

	 9.	 Khalastchi E, Kalech M (2018) A sensor-based approach 
for fault detection and diagnosis for robotic systems. 
Autonom Robots 42(6):1231–1248. https://​doi.​org/​10.​1007/​
s10514-​017-​9688-z

	10.	 Para J, Del Ser J, Nebro AJ, Zurutuza U, Herrera F (2019) Ana-
lyze, sense, preprocess, predict, implement, and deploy (asp-
pid): an incremental methodology based on data analytics for 
cost-efficiently monitoring the industry 4.0. Eng Appl Artif 
Intell 82:30–43. https://​doi.​org/​10.​1016/j.​engap​pai.​2019.​03.​022

	11.	 Roldan-Gomez JJ, de Leon J, Garcia-Aunon P, Barrientos A 
(2020) A review on multi-robot systems: current challenges for 
operators and new developments of interfaces. Revista Iber-
oamericana de Automática e Informática Industrial 17:294–305. 
https://​doi.​org/​10.​4995/​riai.​2020.​13100

	12.	 Mao X, Huang H, Wang S (2020) Software engineering for 
autonomous robot: challenges, progresses and opportunities. 
In: 2020 27th Asia-Pacific software engineering conference 
(APSEC), pp 100–108. https://​doi.​org/​10.​1109/​APSEC​51365.​
2020.​00018

	13.	 Wienke J, Wrede S (2016). A fault detection data set for per-
formance bugs in component-based robotic systems. https://​doi.​
org/​10.​4119/​unibi/​29009​11

	14.	 Wienke J, Meyer zu Borgsen S, Wrede S (2016) A data set for 
fault detection research on component-based robotic systems. 
In: Alboul L, Damian D, Aitken JM (eds) Towards autonomous 
robotic systems, vol 9716. Springer, Cham, pp 339–350. https://​
doi.​org/​10.​1007/​978-3-​319-​40379-3_​35

	15.	 Wienke J, Wrede S (2016) Autonomous fault detection for per-
formance bugs in component-based robotic systems. In: 2016 
IEEE/RSJ international conference on intelligent robots and 
systems (IROS). https://​doi.​org/​10.​1109/​IROS.​2016.​77595​07. 
IEEE, pp 3291–3297

	16.	 Wienke J (2018) Framework-level resouce awareness in robotics 
and intelligent systems. Phd dissertation, Bielefeld University. 
https://​doi.​org/​10.​4119/​unibi/​29321​36

	17.	 Basurto N, Cambra C (2020) Álvaro Herrero: improving the 
detection of robot anomalies by handling data irregularities. 
Neurocomputing. https://​doi.​org/​10.​1016/j.​neucom.​2020.​05.​101

	18.	 Basurto N, Cambra C, Herrero A (2020) Ai-driven visualiza-
tions for performance monitoring and anomaly detection in 
robots. In: 2020 IEEE/ACS 17th international conference on 

computer systems and applications (AICCSA). IEEE Computer 
Society, Los Alamitos, CA, USA, pp 1–6. https://​doi.​org/​10.​
1109/​AICCS​A50499.​2020.​93165​13

	19.	 Wen X, Chen H (2020) Heterogeneous connection and process 
anomaly detection of industrial robot in intelligent factory. https://​
doi.​org/​10.​1142/​S0218​00142​05904​17

	20.	 Chen T, Liu X, Xia B, Wang W, Lai Y (2020) Unsupervised 
anomaly detection of industrial robots using sliding-window con-
volutional variational autoencoder. IEEE Access 8:47072–47081. 
https://​doi.​org/​10.​1109/​ACCESS.​2020.​29778​92

	21.	 Castellano-Quero M, Fernández-Madrigal JA, García-Cerezo 
A (2021) Improving Bayesian inference efficiency for sensory 
anomaly detection and recovery in mobile robots. Expert Syst 
Appl 163:113755. https://​doi.​org/​10.​1016/J.​ESWA.​2020.​113755

	22.	 Demartines P, Herault J (1997) Curvilinear component analysis: a 
self-organizing neural network for nonlinear mapping of data sets. 
IEEE Trans Neural Netw 8(1):148–154. https://​doi.​org/​10.​1109/​
72.​554199

	23.	 Sammon JW (1969) A nonlinear mapping for data structure anal-
ysis. IEEE Trans Comput C 18(5):401–409. https://​doi.​org/​10.​
1109/T-​C.​1969.​222678

	24.	 van der Maaten L, Hinton G (2008) Visualizing data using t-sne. 
J Mach Learn Res 9:2579–2605

	25.	 van der Maaten L, Hinton G (2002) Stochastic neighbor embed-
ding. Adv Neural Inf Process Syst 15:833–840

	26.	 Wienke J, Wrede S (2011) A middleware for collaborative 
research in experimental robotics. In: 2011 IEEE/SICE interna-
tional symposium on system integration (SII), pp 1183–1190. 
https://​doi.​org/​10.​1109/​SII.​2011.​61476​17

	27.	 Basurto N, Herrero Á (2020) Data selection to improve anom-
aly detection in a component-based robot. In: Martínez Álvarez 
F, Troncoso Lora A, Sáez Muñoz JA, Quintián H, Corchado E 
(eds) 14th International conference on soft computing models in 
industrial and environmental applications (SOCO 2019). Springer, 
Cham, pp 241–250

	28.	 Schubert E, Sander J, Ester M, Kriegel HP, Xu X (2017) Dbscan 
revisited: why and how you should (still) use dbscan. ACM Trans 
Database Syst 42(3):19–11921. https://​doi.​org/​10.​1145/​30683​35

	29.	 Arroyo Á, Herrero Á, Tricio V, Corchado E (2017) Analysis of 
meteorological conditions in Spain by means of clustering tech-
niques. J Appl Logic 24:76–89. https://​doi.​org/​10.​1016/j.​jal.​2016.​
11.​026

Publisher's Note  Springer Nature remains neutral with regard to 
jurisdictional claims in published maps and institutional affiliations.

https://doi.org/10.1016/j.neucom.2019.07.034
https://doi.org/10.1016/j.neucom.2019.07.034
https://doi.org/10.1007/s00521-019-04407-2
https://doi.org/10.1007/s10514-017-9688-z
https://doi.org/10.1007/s10514-017-9688-z
https://doi.org/10.1016/j.engappai.2019.03.022
https://doi.org/10.4995/riai.2020.13100
https://doi.org/10.1109/APSEC51365.2020.00018
https://doi.org/10.1109/APSEC51365.2020.00018
https://doi.org/10.4119/unibi/2900911
https://doi.org/10.4119/unibi/2900911
https://doi.org/10.1007/978-3-319-40379-3_35
https://doi.org/10.1007/978-3-319-40379-3_35
https://doi.org/10.1109/IROS.2016.7759507
https://doi.org/10.4119/unibi/2932136
https://doi.org/10.1016/j.neucom.2020.05.101
https://doi.org/10.1109/AICCSA50499.2020.9316513
https://doi.org/10.1109/AICCSA50499.2020.9316513
https://doi.org/10.1142/S0218001420590417
https://doi.org/10.1142/S0218001420590417
https://doi.org/10.1109/ACCESS.2020.2977892
https://doi.org/10.1016/J.ESWA.2020.113755
https://doi.org/10.1109/72.554199
https://doi.org/10.1109/72.554199
https://doi.org/10.1109/T-C.1969.222678
https://doi.org/10.1109/T-C.1969.222678
https://doi.org/10.1109/SII.2011.6147617
https://doi.org/10.1145/3068335
https://doi.org/10.1016/j.jal.2016.11.026
https://doi.org/10.1016/j.jal.2016.11.026

	A visual tool for monitoring and detecting anomalies in robot performance
	Abstract
	1 Introduction
	2 Related work
	3 Novel visualization techniques for HUEPs
	3.1 Curvilinear Component Analysis
	3.2 t-distributed stochastic neighbor embedding

	4 Analysing performance anomalies in robots
	5 Experiments and obtained results
	5.1 A1 anomaly results
	5.2 A2 anomaly results

	6 Conclusions and future work
	References




