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A B S T R A C T

The automation of Fault Detection and Diagnosis (FDD) is a central task for many industries today. A myriad
of methods are in use, although the most recent leading contenders are data-driven approaches and especially
Machine Learning (ML) methods. ML algorithms fall into two main categories: supervised and unsupervised
methods, depending on whether or not the instances are labeled with the expected outputs. However, a new
approach called Semi-Supervised Learning (SSL) has recently emerged that uses a few labeled instances together
with other unlabeled instances for the training process. This new approach can significantly improve the
accuracy of conventional ML models for industrial environments where labeled data are scarce. SSL has been
tested as a promising solution over the past few years for several FDD problems, although there have been no
systemic reviews of this sort of approach up until the present review. In this study, an attempt to organize the
existing literature on SSL for FDD using the taxonomy of van Engelen & Hoos is reported. The most and the
least frequently used SSL algorithms are identified and considered in terms of different fault detection tasks
and their most common dataset structure. Moreover, a set of best practices are proposed in the conclusions of
this work for implementation under real industrial conditions, so as to avoid some of the most common faults.
1. Introduction

Nowadays, data is routinely gathered as part of the increasingly
digitized industrial processes of Industry 4.0 [1]. Industry can therefore
benefit when data are used in several ways to assist with the automa-
tion or semi-automation of routine industrial processes and tasks, such
as online process monitoring [2], fault detection, and diagnosis [3], and
condition monitoring [4], among others.

ML algorithms are usually grouped into: supervised learning—when
datasets1 have feature(s) of interest, commonly referred to as class(es)
– and unsupervised learning – when datasets have no class feature(s).
Clustering is a popular unsupervised learning task, whereas classifica-
tion and regression are common supervised learning tasks. On the one
hand, the main drawback of supervised learning is that data with the
right features are needed: there must be sufficient data that must be
properly classified – labeled – in accordance with the model learning
process and the purpose of the model, e.g., normal and abnormal
(faulty) conditions for industrial-process monitoring, or the different
types of faults for Fault Detection and Diagnosis (FDD). On the other
hand, unsupervised learning yields less accurate models, due to an
absence of labeling. Somewhere in between, there is Semi-Supervised

∗ Corresponding author.
E-mail address: alvarag@ubu.es (Á. Arnaiz-González).

1 A dataset in this context is understood as a tabular matrix composed of rows, called instances/examples/prototypes, and columns, called features/attributes.
In industrial processes, experiments are listed in the rows and experimental measurements are listed in the columns.

Learning (SSL), which represents an attempt to use unlabeled informa-
tion to improve the accuracy of supervised models when insufficient
labeled observations are available.

In any industrial process monitored under real industrial conditions,
huge volumes of data may be gathered during routine operations;
however, only some of these data are properly labeled [5]. It should
be noted that the labeling process is usually a time-consuming and
costly exercise, which is usually carried out by human experts [6].
In addition, most of the data are examples of non-faulty behavior
and there are very few examples of fault conditions. Sometimes data
on certain failure modes are not captured and, therefore, there are
no data available. Artificial data have been applied in most present-
day research projects, to overcome this limitation, because they are
generated under laboratory conditions, where faults are intentionally
introduced to obtain balanced datasets, in terms of fault and non-
fault examples. The industrial requirements of providing data solutions
under real industrial conditions commonly implies the use of unla-
beled data. Hence the use of SSL that involves unsupervised learning
approaches in conjunction with labeled data [7].
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Within the context of the FDD industrial problem, a set of articles
describing methods capable of detecting and diagnosing faults were
selected. Among this sample of articles, there are several industrial
applications, as will be discussed in Section 6.4. Most of the articles
were focused on the utilization of bearing datasets with faults such as
ball, inner race, and outer race faults. Additionally, there were articles
that addressed faults related to chemicals, surface defects, and wind
turbines, among others.

The recent literature on SSL applied to FDD is reviewed in this
paper. To do so, an in-depth search of related articles from 2011 to
October 2022 was conducted. Scopus and Google Scholar databases
were used for finding the articles related with the topic. The Scopus
database was queried for articles containing the words ‘fault detection’
and ‘semi-supervised’ or ‘semisupervised’ in the title, abstract, or key-
words. Google Scholar was also queried using similar terms that yielded
most of the studies on SSL in the context of FDD (in addition, all the
cited articles for each paper were checked, so as not to leave any studies
overlooked).

More than 300 articles were obtained in an initial search. Their
abstracts were read in a preliminary filtering process. Congress papers,
articles that were not about industrial FDD, and articles not in English
were omitted, leaving 200 articles, all of which were read in full. In
that step, a further 50 articles were discarded, either because they were
not on the subject of industrial FDD or because SSL methods were
not mentioned. Finally, 137 articles were included in the final study,
but more than 137 methods were considered, because various methods
were presented in some articles.

The main purpose of this article is to address the increasing adoption
of SSL methods in several industrial applications, including FDD. De-
spite their widespread use, the organization and information regarding
these SSL methods are often confused. Furthermore, several instances
of misconduct in the application of SSL methods, including their ap-
plication to FDD problems, have been identified. This misuse of SSL
methods has sometimes led to misguided outcomes, which emphasizes
the need to rectify their use.

Taking into account the aforementioned motivations, a set of objec-
tives have been established. The first one is to clarify the structure of
SSL methods applied to FDD, categorizing each method within a well-
established taxonomy. Once every method is categorized, a study of the
use of every type of SSL method becomes mandatory, in order to assess
the relevance of each SSL method type. Furthermore, defining a set of
best practices to assist the development of future applications of SSL
methods in FDD, as well as other industrial fields, was also a primary
objective. Finally, a paramount objective of this article is to identify
future trends in the application of SSL methods to FDD, highlighting
areas where further research can be conducted to address gaps in the
current state-of-the-art.

The remainder of this review is organized as follows: firstly, the
main theoretical concepts, namely SSL, FDD, active learning, transfer
learning, and safe SSL are described in Section 2; secondly, the refer-
ence taxonomy is introduced in Section 3; the articles related to the
topic are reviewed, and a proposal for their classification is offered in
Sections 4 and 5; the main results and a discussion of the questions
that arise are presented in Section 6; and, finally, the conclusions, a
set of best practices, and some promising future trends are discussed in
Section 7.

2. Background

In this section, the necessary background for following the paper
is presented. In particular, fault detection and diagnosis (FDD) and the
different learning approaches relevant to the rest of the study are briefly
described: i.e., semi-supervised learning (SSL), active learning, transfer
learning, and safe SSL.
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2.1. Fault detection and diagnosis (FDD)

Nowadays, FDD is one of the cornerstones to ensure the proper
operation of complex industrial processes and equipment [8,9]. FDD
is one of several processes that can be automated or semi-automated
in industrial environments [10]. Among other examples, condition
monitoring, predictive maintenance, and process monitoring may all
be mentioned. Automated FDD is focused on detecting when an error
or bad-function condition occurs within a process or system; once it
occurs, the type of fault and even the specific part of the process that
is failing may all be identified using FDD [11].

FDD is a difficult task because: (1) fault conditions data are rare
compared with normal conditions data; (2) the normal variability of
the industrial processes may be responsible for the observed deviations
in the features; (3) the complex interrelations between process inputs
can make it difficult to identify the source and type of some faults [12].
For all these reasons, the problem has been solved in different ways.

For 20 years, FDD approaches were split into three categories:
the model-based approach [13], the knowledge-based approach [14],
and the history-based approach [15]. A more recent review of FDD
techniques for industrial maintenance [16] keeps this division, while
changing the name of the third approach to data-driven [12] and
focusing on the industrial requirements of Industry 4.0. Besides, recent
reviews have been limited to specific processes where FDD plays a
major role: chemical processes [9] and machinery failures [17], among
others. In comparison with these previous works, the focus of this
systemic review is placed on a promising new set of algorithms: the
SSL techniques.

The FDD approaches are classified on the basis of data availability,
because data structure, characteristics, and size all play major roles in
FDD. The use of data collected for diagnosis from the process or system
during its operation means that normal operating conditions may
be interrupted and can vary when unexpected events occur, such as
failure and even normal wear and tear [10]. A model can therefore be
constructed that associates the behavior observed in some features with
normal operating conditions and with one or more failure conditions.

As previously noted, ML algorithms have normally been divided into
two main approaches, namely supervised and unsupervised learning,
depending on whether or not the instances are labeled with information
on the expected outcome. However, output availability is often men-
tioned as a key factor when choosing the most suitable and accurate
ML algorithm. For example, approaches using neural networks often
produce very accurate models, but they often require a large amount
of labeled data with sufficient fault data examples to achieve that
accuracy, a rare case in real industrial conditions, as Jiang et al. [18]
previously outlined.

In general, it can be said that a key point in the whole ML process is
to gather a proper set of representative examples that are labeled with
accurate outputs, which can then be used as inputs for training ML
algorithms. Today, data from many processes can easily be captured
and stored at little or no cost. However, the process of labeling in-
stances with the expected output is usually laborious, time-consuming,
and expensive [19]. This industrial limitation is the key issue driving
the introduction of SSL for use in FDD tasks.

2.2. Semi-supervised learning (SSL)

Zhou [20] defined supervised learning as a situation where there
are sufficient accurately labeled instances available to train a model,
while alternative situations are globally classified as weakly super-
vised learning. The author distinguished three main types of weakly
supervised learning: incomplete supervision, inexact supervision, and
inaccurate supervision. Incomplete supervision refers to a dataset with
an insufficient number of accurately labeled instances, though unla-
beled instances are available; in this case, active learning or SSL can be
used, depending on whether an accurate label can be requested from a
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human operator. Inexact supervision refers to a dataset with accurately
labeled instances, though the labels are coarse-grained, and not as
precise as needed. Finally, inaccurate supervision refers to a training
dataset with some erroneous labels, which must be taken into account
during the learning process, usually by updating those erroneous labels.

A possible solution to the problem of not having enough labeled
instances for training, an intermediate approach between supervised
and unsupervised algorithms, has been proposed: SSL. The goal of SSL
is to try to obtain an accurate model using a limited amount of labeled
instances together with unlabeled instances, in order to improve the
model that only the labeled instances can obtain. SSL is based on four
main assumptions [7,21]:

• Smoothness assumption: two instances that are close to each other
in the input space have the same label.

• Low-density assumption: the decision boundary should pass
through a low-density space.

• Manifold assumption: the high-dimensional input space is com-
posed of multiple lower-density sub-spaces. Instances of the same
lower-density sub-space must have the same label.

• Cluster assumption: instances that are located in the same cluster
should have the same label.

However, the semi-supervised approach is not often considered in
iterature reviews on applications of ML-based solutions within in-
ustrial environments. For example, Mowbray et al. [22] presented
review of ML approaches in the chemical process industry that in-

luded: supervised, unsupervised, and reinforcement learning, although
SL was not considered.

The use of unlabeled data can be done in several ways and at various
tages of the process. For example, a common step before the training
hase is to perform feature selection or dimensionality reduction of
he available data. A common unsupervised method for this purpose
s Principal Component Analysis (PCA),2 which allows direct use of the
nlabeled data in that step.

A supervised alternative is Fisher Discriminant Analysis (FDA),3
hich can only use labeled instances.

However, several semi-supervised versions of FDA have been pro-
osed, e.g., Semi-supervised FDA (SFDA) [5], Ensemble Semi-supervised
DA (ESFDA) [23], and others with which both labeled and unlabeled
nstances can be used at the same time. Similarly, a multitude of
lgorithms have been developed to include the unlabeled instances in
he training step of the model using different approaches.

SSL methods can initially be divided into transductive and inductive
ethods [7]. On the one hand, transductive algorithms usually develop
o model in the training phase and the goal is to label the set of unla-
eled instances that are already available. Therefore, the transductive
pproach is not used with new and unseen instances, for example, in
n on-line diagnostic system that performs detection and diagnosis as
ew data are collected. On the other hand, inductive algorithms usually
evelop a model during the training phase that can be used later on to
abel unseen data. The goal in this case is to use the unlabeled instances
lready available during the training stage to improve the model that
ould have been obtained, had only labeled instances been used for
raining. It has been addressed in many ways, as can be seen in [7,24].

complete explanation of SSL taxonomy will be detailed in Section 3.

2 PCA aims to transform the feature space by creating a new set of orthog-
nal variables, known as principal components, which capture the maximum
ariance in the data and improve the identification of data patterns.

3 FDA aims to find a linear combination of features to maximize the
eparability between classes in a dataset.
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2.3. Active learning

Active learning uses both labeled and unlabeled instances for the
training, but instead of using an ML model to pseudo-label the unla-
beled instances as SSL does, it selects the most relevant unlabeled items
to be queried for labeling, e.g., by a human expert.

A typical criterion for the selection of unlabeled data is the least
certain instances to be labeled, or the ones that provide the largest
expected error reduction, among others [25,26].

Several active learning applications have been developed for FDD
problems, such as in [27], where bearing faults are predicted using a
residual network with active learning, enabling similar results to be
achieved with 150 instances compared to 1 200.

Active learning is, nonetheless, often seen as a different, perhaps
even contrary, approach to semi-supervised learning. Despite these
different approaches towards learning, active learning can be applied
together with SSL (e.g. [28–30]) in which an expert labels the most
uncertain unlabeled instances.

2.4. Transfer learning

Transfer Learning [31], also known as Cross Domain, Domain Gen-
eralization, or Cross Machine, is a ML technique that is designed to
improve models by adding information from another domain. Two
different domains are then considered: the domain of the problem that
is to be solved, called the target domain, and the domain of a similar
problem where information can be obtained, called the source domain.

All instances of the source domain are usually labeled in transfer
learning applied to SSL problems. So, if the source and target domains
are similar, significant amounts of information may be obtained.

Several transfer learning applications have been developed for FDD
due to the limited availability of labeled data in most datasets. Exam-
ples of transfer learning applied to FDD include [32], where different
modes from the Tennessee Eastman Process dataset [33] were utilized
as distinct views for transfer learning, and [34] where transfer learning
was employed to enhance the information in chiller FDD problems.

2.5. Safe semi-supervised learning (SSL)

One of the problems of some SSL techniques is that they do not
guarantee that the performance of the model using both labeled and un-
labeled data is better, or at least not worse, than the model trained with
labeled data alone [35]. This possible collateral effect has meant that
SSL is not as popular as other ML techniques in industrial applications.

Bearing the above in mind, the idea behind safe SSL is that it is
meant to ensure that a model trained with unlabeled data will not
impinge on the classification capabilities of a model trained only with
labeled examples. Safe SSL is described in far greater detail in [36].

The number of studies on Safe SSL for FDD is very scarce, though a
detailed explanation on one such study, [37], can be found among this
manuscript.

3. Taxonomy of semi-supervised learning

In this section, a taxonomy of SSL is presented for categorizing the
literature on FDD, which is applied in the following sections. An up-
to-date review of SSL algorithms can be found in [7], in which the
taxonomy used in this paper is developed to classify those algorithms.

The taxonomy used as a reference for the classification is depicted
in Fig. 1. In addition, three new elements have been added to the
taxonomy that are related to SSL in several of the articles that were
reviewed: active learning, transfer learning, and safe semi-supervised
learning. In the literature, active learning and safe SSL have only been
related to inductive learning methods, while transfer learning has been
applied to inductive and transductive learning. Nonetheless, active
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Fig. 1. Taxonomy for semi-supervised classification methods. The original taxonomy proposed in [7], in addition to the three additional techniques found in the review.
Fig. 2. The different articles under review are sorted by year and classified according to the taxonomy of Engelen & Hoos [7]. The inductive methods are further grouped into
the three subcategories: wrapper methods, unsupervised pre-processing, and intrinsically semi-supervised.
learning, safe SSL, and transfer learning are transversal to SSL methods
and can be applied to more than one method or type of method.

Although each semi-supervised category can be divided into further
subcategories, as was done by Triguero et al. [24], the more general
and well-established taxonomy proposed by Engelen & Hoos [7] was
used in this review, as the taxonomy proposed in [24] was partial and
referred only to wrapper methods. In Fig. 2, the articles are sorted by
year and grouped under to their corresponding categories according
to the aforementioned taxonomy. The evolution of articles in terms of
category distribution will be further explained in subsequent sections.

The following sections compile and arrange the extensive litera-
ture on FDD in which SSL is used. Transductive and inductive meth-
ods are divided into different sections to enhance comprehension and
organization, respectively, Sections 4 and 5.

4. Transductive

The initial group of reviewed SSL methods comprises transductive
methods. As previously noted, the only label that transductive algo-
rithms can predict is the label of unlabeled instances already available
in the training phase; they are always based on graphs. Methods
are typically composed of three phases [7]: graph creation, graph
258
weighting, and inference (label propagation). Among the articles under
review, the transductive proposals for FDD are summarized below.

Several authors have researched various ways of building a graph:
Zhao et al. [38] used Non-negative Sparse Coding (NSC) to construct
their graphs; k-Nearest Neighbors (kNN), which is based on smoothness
assumption, was used to build the graph in [39]; while Wang et al. [40]
used Non-negative Matrix Factorization (NMF).

Several authors have based their methods on Greedy Gradient Max-
Cut (GGMC) for label propagation [41–44]. Zhao et al. [45] pro-
posed Graph Based SSL (GBSSL) applied to photovoltaic faults. Momeni
et al. [46] then improved on this method, increasing its accuracy, so as
to pinpoint the fault.

Some research was focused on imbalanced datasets, and how to
deal with this problem. Qian & Li [47] used the Synthetic Minority
Oversampling TEchnique (SMOTE). Likewise, Fang et al. [48] used a
Generative Adversarial Network (GAN) in a labeled dataset to correct
its proportions. Some other research is also of interest. Chen et al. [49]
applied, in addition to the transductive graph, a Random Forest (RF)
classifier to verify the graph predictions.

Transfer Learning between datasets was used in [50] to improve
graph accuracy. Zhao et al. [51] used a transductive graph method,
called Semi-supervised Local Kernel Density Estimation (SLKDE), to
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classify historical off-line data and then to create a supervised classifier
to detect and to diagnose on-line faults within wireless sensor networks.

As it can be seen, there are scarce few works related to transductive
methods applied to FDD. This can be explained because in industrial
applications is usually desired the ability of inductive methods to
pseudo-label new instances that are not available on the training stage.
This makes inductive methods more versatile and useful.

5. Inductive

Subsequently, the focus will shift towards exploring the realm of
inductive SSL methods. Most of the articles under review used an induc-
tive approach. Inductive algorithms generate a model, which once it has
been trained, can be used to predict the label of new instances. Induc-
tive algorithms can be further divided into three subcategories: wrapper
methods (Section 5.1), unsupervised pre-processing (Section 5.2), and
intrinsically semi-supervised (Section 5.3).

5.1. Wrapper methods

Wrapper methods are the first inductive method type to be re-
viewed. These methods first train a classifier (some wrapper methods
train more than one classifier) using only the labeled instances for
generating the predictions of unlabeled instances. Then, the classifier
is (or the classifiers are) retrained using both the original labeled
instances and the new labeled (also called pseudo-labeled) instances for
improving the model, in a process that can be performed several times.
With regard to the wrapper methods, Engelen & Hoos [7] identified
three main groups that are listed below.

5.1.1. Self-training
Self-training is the simplest way to obtain a SSL algorithm from

a supervised one. Self-training first trains a model with the labeled
instances alone, and then the unlabeled instances are pseudo-labeled
with the prediction of the trained model. Pseudo-labeled instances,
whose prediction confidence is above a certain threshold, are added
to the labeled dataset [52]. The training and pseudo-labeling processes
are repeated until either there are no unlabeled data or a predefined
threshold is reached. The work of Triguero et al. [24] is recommended,
for an exhaustive literature review of self-training methods.

Self-training has been applied in various ways, modifying differ-
ent sections of its implementation. For example, Zheng & Zhao [53]
changed the way confidence is calculated for pseudo-labels. The au-
thors used a Temporal-Spatial Confidence Measure (TSCM) to obtain
temporal and spatial information from unlabeled and pseudo-labeled
data. In [54] , the same authors modified confidence, so that it could
be calculated as a distance.

However, the threshold itself was changed in several papers. Zhang
et al. [55] determined the threshold using Monte Carlo and Liu et al.
[56] used a dual-threshold, in order to avoid overfitting.

Other authors modified the way their pseudo-labels are selected
to be added to the labeled dataset. In [2,29] used Active Learning
Semi FDA (ALSemiFDA), a special self-training method whose pseudo-
labeled instances are not fixed, and with which the pseudo-labeled in-
stances could be corrected when mislabeled. Long et al. [57] presented
two selection strategies for self-training method, Gradually Exploiting
Mechanism (GEM) and Distance-Based Sampling Criterion (DBSC).

Other authors have focused on datasets of a specific type: im-
balanced datasets were investigated in [58], the focus was on noisy
datasets in [59], while datasets with new faults that were not available
259

in the training phase were examined in [60]. n
5.1.2. Co-training
Co-training is the adaptation of self-training from the perspective

of an ensemble.4 Co-training methods are composed of two or more
supervised models trained with the same (single view) or different
(multiple views) labeled instances [62]. The models then predict the
labels of the unlabeled instances that are updated (mainly by voting or
by the sum of confidences). As in self-training, the process is repeated
until all unlabeled instances have been pseudo-labeled in all views, or
a predefined limit has been reached.

An example of single view co-training applied to FDD can be found
in [23] where a GAN was used to generate unlabeled data which
was then used in the co-training, combining the prediction, by voting,
of a conditional Deep Convolutional GAN (cDCGAN)5 and a Residual
Network (ResNet18).6 Another example of the co-training method with
two base estimators, Decision Trees (DT) and kNN, is presented in [63].

In Tri-training [64], as its name suggests, three classifiers are
trained. It is a multi-view co-training method that has been extensively
used with FDD, as described in [30,65–67].

Other authors have proposed co-training methods with multiple
(undefined) base estimators. On the one hand, Liu et al. [68] used
Extreme Learning Machines (ELM) as a base estimator to detect and
to diagnose milling faults. On the other, Huang et al. [69] proposed a
co-training method based on fuzzy rules for demagnetization faults.

5.1.3. Boosting
Boosting [70] is an ensemble method that aims to distribute weights

among the model predictions, so that greater weight is assigned to
those instances that are mislabeled. When boosting is applied, several
weak models are trained, which together generate a strong (good)
classifier. The different base classifiers are combined based on weights
that depend on their accuracy. Nonetheless, boosting has not been
widely used in SSL for FDD.

Razavi-Far et al. [71] compared multiple SSL methods for feature
extraction and for classification, noting that the ASSEMBLE [72] clas-
sifier achieved the best results. In [73] multiple feature extraction
methods and SSL classification methods, among which SemiBoost [74],
were also compared.

5.2. Unsupervised pre-processing

Having reviewed wrappers, the focus now shifts to the exploration
of unsupervised pre-processing methods. Unsupervised pre-processing
methods use unlabeled instances for different purposes, such as to
extract features from the unlabeled data, pre-clustering the data, and
setting the initial parameters of a supervised learning model in an
unsupervised way. It must be noted that this type of methods performs
these actions prior to the training of the final model. Unsupervised
pre-processing can be further divided into three subcategories: feature
extraction, cluster-then-label, and pre-training.

5.2.1. Feature extraction
Feature extraction is an attempt to transform the available data,

either to improve the accuracy of the model, or to make its construction
more efficient. These reasons are more important for the approaches
that do not rely on neural networks to obtain the trained model and,
therefore, a common step is to perform a semi-supervised feature

4 Ensembles, also known as multi-classifiers, are methods that use more
han one model (classifier or regressor) to improve their prediction capabil-
ties; for further information, the authors would recommend the following
ork [61].
5 cDCGAN is a GAN based method with which labeled data can be

enerated and classified.
6 Residual Network (ResNet18) is a supervised classification deep neural
etwork with skip connections.
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extraction or dimensionality reduction, in an attempt to take advantage
of both labeled and unlabeled observations.

Different kinds of Auto-Encoders (AE) have been used for dimen-
sionality reduction and for extracting features from high dimensional
datasets as in [18,75–78]. Because EAs can be used for dimensionality
reduction and are unsupervised in nature, they provide an easy way to
account for unlabeled items.

The different types of FDA variations, as applied in [5,79–84], form
another typical approach for semi-supervised feature extraction and
dimensionality reduction. Although FDA is a supervised dimensionality
reduction algorithm and is therefore based on the output feature(s),
there have been several proposals to obtain semi-supervised versions
of FDA so that dimensionality reduction can be performed, taking into
account both labeled and unlabeled data.

Yet another common approach is to use a manifold-based approach,
such as the ones applied in [71,85–89]. Manifold learning methods
try to reduce the dimensionality of the data while preserving the
nonlinearities present in the data.

Some additional strategies to semi-supervised dimensionality reduc-
tion or feature extraction have been tested, such as the Support Vector
Machine (SVM), as described in [90,91], and hypergraphs, as described
in [92].

5.2.2. Cluster-then-label
A popular practice in SSL is to perform clustering first, either un-

supervised or semi-supervised, hoping that the result of the clustering
will serve as a guide in the subsequent classification process.

Proposals can be arranged into two main groups that use either any
kind of semi-supervised approach or unsupervised clustering.

Semi-supervised clustering is a kind of clustering that at some point
uses information (from labeled instances or constraints) that improves
its performance. Semi-supervised clustering was used in the following
proposals [4,45,93–97]. On the other hand, there are several proposals
using an unsupervised (i.e., 𝑘-Means, density peak clustering, among
others) clustering algorithm [98–102]. In this case, the unsupervised
clustering process is usually a prior step that clusters the data be-
fore any semi-supervised labeling process is performed, or the process
is used as a pseudo-labeling step performed after a semi-supervised
process such as feature extraction or a dimensionality reduction step.

It is worth mentioning that new types of faults, which were not
present in the training dataset, may be detected with some of these
proposed methods, [95,96,100].

5.2.3. Pre-training
Pre-training uses unlabeled data primarily for approximating

weights in deep learning networks, such as Deep Belief Networks (DBN)
and stacked autoencoders, before applying supervised learning for fine
tuning those weights.

Ding et al. [103] used a modified ResNet for incipient fault detection
using vibration signals. The neural network was firstly pre-trained and
then a semi-supervised fine tuning was performed. Finally, it was able
to classify under either normal or (incipient) fault conditions.

Liao et al. [104] proposed the use of an optimized DBN through
the particle swarm approach for avoiding the optimization problems
associated with DBN. The DBN must be pretrained in an unsupervised
way before fine tuning using labeled data.

5.3. Intrinsically semi-supervised

Continuing with the discussion, the focus will now shift to the
examination of the last category of inductive methods, known as in-
trinsically semi-supervised. These methods incorporate unlabeled in-
stances into the objective or optimization function of the learning
method. Intrinsically semi-supervised methods can be further divided
into: maximum-margin, perturbation-based, manifolds, and generative
models.
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5.3.1. Maximum-margin
Maximum-margin methods represent an attempt to maximize the

distance between the data points and the decision boundary, based on
the low-density assumption. As in a supervised learning approach to
margin maximization, SVM adaptations are often used. Several adap-
tations of SVM to SSL have been proposed throughout the past few
decades [105], in which semi-supervised SVMs leverage information
from unlabeled data to achieve better class separation.

Wang et al. [106] used a tree structure created with the Semi-
Supervised Gaussian Mixture Model (SGMM) in combination with a
Semi-Supervised SVM (S3VM). Jia et al. [37] proposed a Dynamic
Active Safe Semi-Supervised SVM (DAS4VM) with active learning and
safe SSL to detect faults using PCA as pre-processing. Mao et al. [107]
also applied a S4VM where an online perspective was used to distin-
guish between faulty and normal states, among others. Other authors
applied the low-density assumption to their neural networks, in order
to separate data of different classes [108,109].

5.3.2. Perturbation-based
Based on the smoothness assumption, perturbation-based methods

try to add noise to the data or apply noise directly to the model, since if
the noisy data and the real data are similar they should have the same
label.

Neural networks are one of the most commonly used techniques in
perturbation-based methods, for example in [110] a Semi-Supervised
Deep Ladder Network (SSDLN) with information fusion on a gear
failure dataset was tested. Chen et al. [111] also used the Ladder
Network,7 this time applied to photovoltaic systems.

Another type of neural network that has been modified to be an
SSL perturbation-based method is Long Short Term Memory (LSTM).8
Zhang & Qiu [112], for example, applied LSTM to a chemical dataset;
while Tang et al. [113] used LSTM with transfer learning to address
bearing faults.

Some authors used Data Augmentation/Generative methods to im-
prove dataset information and then used the improved dataset to train
a perturbation-based neural network [114–116].

Other types of modifications have been proposed in various studies,
in order to apply perturbation-based methods to the FDD problem. Hu
et al. [117] used two networks, one for inter-instance information and
another for intra-temporal information, which were then mixed in the
final loss function to classify bearing faults. Bearing faults were also
taken into account in [118] where a Deep AutoEncoder (DAE) was used
to preprocess bearing data, and in [119] where an attention method
called squeeze-and-excitation was used. Shim et al. [120] proposed a
three-phase framework for wafer semiconductor manufacturing. The
framework was special, in so far as different types of ML (super-
vised, unsupervised, and semi-supervised) methods were applied in
each phase, depending on the amount of labeled data available.

5.3.3. Manifolds
Centering on the manifold assumption, manifold methods usually

modify the input feature space to calculate distances between data
points, which can also be achieved with graphs. Manifolds methods
have been widely applied to different FDD problems.

Most of the research on manifold SSL applied to FDD is graph-based.
It is common to generate a graph and then calculate classes from a
distance type [121–125]. Multiple graphs are used in some manifolds,
in order to represent the information [126–128]. While others used
different techniques to add more information to the graph [129].

7 Semi-Supervised Ladder Neural Networks are an accurate representa-
ion of perturbation-based methods, as this type of network modifies its
ost function to incorporate both labeled and unlabeled data, all with
ackpropagation.

8 LSTM is a type of recurrent neural network architecture designed to

ffectively capture and model long-term dependencies in sequential data.
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Some research can be grouped by the way the graph that represents
both labeled and unlabeled data is generated. The most common graph
creation method, kNN, is used in several papers, such as [130–132].

Other methods are characterized in different ways. Kernel functions
were used to modify input data, so that the data were distributed
over the different manifolds, as described in [133] for the production
process of fused magnesia and in [3] for the Hot Galvanizing Pick-
ling Waste Liquor Treatment Process (HGPWLTP). Fan & Zhang [134]
also approached the HGPWLTP problem, though they used Laplacian
Regularization.

In some other studies, the techniques were applied to improve the
original dataset, such as active learning, as used in [135]. In yet others,
transfer learning was used to add information from the source domain
to improve the classification of the target domain [136–139].

Different methods to perform interesting types of pre-processing
were used in some other investigations, which consisted of transform-
ing the vibration data into images [19,128,140].

Liu et al. [141] focused on the Riemannian space instead of the
Euclidean space that is typically used. Gao et al. [142] created a
manifold method combining a Convolutional Neural Network (CNN)
and AE to create Pseudo-Label CNN (PLCNN) for FDD. Razavi-Far
et al. [73] proposed Semi-Supervised Smooth Alpha Layering (S3AL),
performing a comparative study between different SSL algorithms.

5.3.4. Generative models
Generative models are designed to create new instances from la-

beled data. A discriminative function of the generative model classifies
most of the new unlabeled data. Several generative methods were pro-
posed in [7] to deal with FDD SSL, all of which rely on the three subsets:
mixture models, generative adversarial networks, and variational AEs.

Mixture models are very useful when the distribution of the data
is known and a mixture model is built based on several distributions.
Several pieces of research have applied mixture models to FDD [143–
146].

The most commonly used model is nevertheless the semi-supervised
GAN. Typical unsupervised GANs are mainly composed of a generator
model, which creates new data from training data, and a discriminator
that serves to detect which data are real (an original labeled data)
and which were created by the generator. In semi-supervised versions
of GAN, the discriminator is modified, so that it can predict the data
labels [147–161].

A Variational AE (VAE) [162] is a latent variable model in which
data are treated as they are generated from a vector of latent vari-
ables [163–166].

As has been seen in other SSL method types, several works transform
their data, mainly vibration-based, into images, in order to be able to
use CNN in the generation process, some examples of which can be
found in [148,151,154,155,157,160].

It is also remarkable that some of the methods proposed in these
articles are able to detect new types of faults, not seen in the training
phase [143,146,152].

6. Results and discussion

Following the thorough review of papers on SSL for FDD, it was
found that the results could not be directly compared, due to differences
between the experiments and the implementations. Instead, a journal
analysis was performed, to show the top journals in which articles
on SSL for FDD have been published (Section 6.1). In addition, the
evolution of publications on SSL for FDD has been studied, to observe
the patterns over time and the possible future of the research field
(Section 6.2). Finally, a popularity comparison was performed, to find
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out which methods appear to be the most widely used (Section 6.3). t
6.1. Journals

The papers under review were published in different journals, some
of which were more generic while others were more specific. The
journals were divided into three different groups: industry, artificial
intelligence, and mixed.

As can be seen in Fig. 3, industry theme journals are the most
popular (59.85%), which may show how industry issues are more
relevant for selecting a journal in which to publish research than the ML
methods themselves. But this approach also explains some limitations
in the use of SSL in industrial environments; a field where most of the
researchers involved in most of the works are closer to the industry
than to computer science.

IEEE Transactions on Instrumentation and Measurement is the industry
journal with the most publications (6.57%). At the other extreme,
artificial intelligence journals hardly pay enough attention to real
solutions for industry, restricting themselves to publications on the
development of ad-hoc SSL solutions for FDD. Therefore, a major role
is expected from hybrid journals, that can build a bridge between these
two disciplines in the near future. It is worth mentioning that IEEE
Transactions on Industrial Informatics and Chemometrics and IEEE Access
re the journals with the most FDD SSL publications (8.76% and 8.03%
espectively).

.2. Publications throughout time

At the beginning, from 2011 to 2015, several SSL method types were
sed for FDD, as it can be seen in Fig. 2. Something that stands out
rom these years is the absence of wrapper methods, despite the fact
hat those methods are the easiest transition from supervised learning
o SSL. This gap may be due to the late application of SSL to FDD, after
he development of other types of methods [21].

From 2015 to 2018, feature extraction methods were the most
opular. However, intrinsically semi-supervised methods have been the
ost widely used since 2018, and mainly methods using the manifold

pproach and generative type methods. The latter because of their abil-
ty to generate new data and their good performance and popularity in
ther fields [167]. Furthermore, transductive and self-training methods
ave also gained popularity quite recently.

It is worth noting that there are some types of methods, such as
anifolds and cluster-then-label, that have been widely used since first

ntroduced.
Overall, focusing on Fig. 4, it is clear that the application of SSL

ethods to FDD problems has been an emerging topic, since its first
pplication up until today. It is thought that this evolution will be
aintained over coming years.

.3. Popularity

As previously noted, inductive methods are by far the most fre-
uently used compared with the transductive ones. Over 90% of the
rticles reviewed for this study are related with inductive methods. The
ossible main reason why inductive methods are more popular than
ransductive ones is because of their capability to predict new data that
ere not been used when training the model. For this reason, there is
o need for retraining with inductive methods whenever new unlabeled
ata are processed.

As can be seen in Fig. 5, wrappers were the least used (18.18% of in-
uctive methods) inductive methods, closely followed by unsupervised
re-processing (25.62%). Finally, intrinsically semi-supervised meth-
ds were the most popular among the inductive methods (56.20%).
he reason why intrinsically semi-supervised models are so popular is
ecause they are the most complex and can be adapted to different
roblems.

Regarding the wrapper methods, self-training and co-training were

he most used (10.74% and 6.61% respectively). It was a bit surprising
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Fig. 3. Distribution of papers, according to their aim and scope by journal of publication: industry, artificial intelligence, and a mixture of both.
Fig. 4. Evolution of the number of publications of SSL applied to FDD over the years.

that self-training was more popular than co-training, because the use
of ensembles should bring better results [168]. Nonetheless, boosting
methods could be applied more often to FDD problems, to obtain better
results and to add to the popularity of wrapper methods, as was shown
in [71].

Not all unsupervised pre-processing methods have been equally
applied to FDD, as few journal publications that used pre-training
methods to approach this problem were found (1.65%). The scarce use
of pre-training methods is probably due to the low impact that can be
achieved compared to training a whole model based on SSL. The other
unsupervised pre-processing methods are widely used: cluster-then-
label methods were mentioned in 10.74% of the articles, meanwhile
feature extraction methods, the third most used subgroup, were slightly
more popular at 13.22%. The main reason for the popularity of feature
extraction methods is their ease of application, in preparation for the
use of SSL.

Intrinsically semi-supervised methods are the most widely used, but
not all of their different types were applied with the same frequency.
On the one hand, the maximum-margin and the perturbation-based
methods are the least used (4.13% and 9.09% respectively). On the
other hand, generative models and manifolds are widely used. The
capability to generate new unlabeled data is the main reason why
generative models are so popular (19.83%). Manifold methods that
are based on the manifold assumption are the most popular subgroup
(23.14%), due to their ability to modify the data space and to classify.
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The results on the popularity of different SSL types are not ran-
dom; instead, they are aligned with the advantages and disadvantages
associated with each type.

A significant distinction arises between inductive and transductive
methods. As mentioned earlier, over 90% of the articles in this review
are based on inductive methods. The primary reason for such a high
imbalance proportion is the key advantage of inductive methods over
transductive methods – the ability to predict new data that was not seen
during the training phase –.

Focusing more deeply on the popularity of the different types of
inductive methods, a more comprehensive analysis can be obtained. To
do so, a summary of the advantages and disadvantages of these types
is presented in Table 1. As mentioned earlier, wrapper methods are the
least used inductive methods, primarily due to the fact that most of
them are prone to add noise, to misclassify pseudo-labels and to add
them to labeled dataset and are unable to correct it. On the other hand,
the use of unsupervised pre-processing methods is astonishing due to
their lower potential impact when utilizing unlabeled data. Finally, the
popularity of intrinsically semi-supervised methods is normal, consider-
ing their ease of development from supervised methods and the ability
of unlabeled data to directly influence the objective function or the
optimization process.

Taking into account the aforementioned popularity and considering
the possible reasons (including the different pros and cons of the
SSL methods), certain gaps may be identified in the application of
SSL to FDD. One potential gap lies in the gain that can be obtained
by applying boosting methods on wrappers: which can improve their
performance through the use of ensembles and the weight distribution
of these models. Another potential gap is the limited application of
maximum margin methods within intrinsically semi-supervised meth-
ods, particularly the underuse of semi-supervised SVM. A broader use
of semi-supervised SVM could be beneficial, given its good performance
in applications across various fields [169].

Unsupervised preprocessing methods are not widely used, primarily
due to their limited potential impact when utilizing unlabeled data.
However, one approach to applying deep learning methods from a
SSL perspective is to employ a pre-training method that enables the
unlabeled data to influence the pre-configuration of the deep network.

One additional gap, irrespective of the method type, pertains to the
application of methods capable of predicting new fault types that have
not been observed in labeled data.

6.4. Industrial issues

The industrial applications of FDD collected in this review are
varied, but most of them are focused on two main topics: chemical



ISA Transactions 143 (2023) 255–270J.M. Ramírez-Sanz et al.
Fig. 5. Distribution of inductive SSL FDD publications found in the review, grouped by type of method as per the taxonomy in [7].
Table 1
Pros and cons of inductive methods.
Method Pros Cons

Wrapper methods 1. Easy to implement. 1. Prone to add noise.
2. Configurable, easy to change base estimator/s. 2. Dependent on supervised methods
3. Can be used with almost any supervised method.

Uns. preprocessing 1. Can be used with almost any supervised method. 2. Less impact of unlabeled data.

Intrinsically semi. 1. Unlabeled data is used on the lower level 1. More complex models Harder to train.
(objective function or optimization procedure). 2. Most of them require large amounts of data.
2. Usually easy to develop from its supervised version.
T

r

and mechanical processes. The mechanical processes are more common
and form part of different fields, from energy generation to machining.
They all merge in so far as they serve: mechanical chain-based problems
that are conventionally evaluated in terms of vibration analysis (e.g.,
bearing and gearbox wear and tear). More than 80% of the research has
been directed at vibration-based problems , due to the high capability of
vibrations to collect useful information on machine performance levels.
In these cases, after an ordinary vibration analysis, it is very common
to apply Fourier transform or discrete wavelet transform techniques
to analyze vibration information. However, some new approaches,
passing vibration behaviors from numbers to images use a different
solution, such as Continuous Wavelet Transform. As both approaches
are based on the extraction of information from vibrations, the richest
source of information on mechanical chain dysfunctions, both should
be considered optimal.

As previously noted in Section 2.1, FDD data are difficult to ob-
tain. Most industrial FDD datasets are imbalanced, as data on nor-
mal/healthy state are easier to obtain than data on failures. There are
even datasets that contain no data on all possible failures, but only on
some of the most common ones. Other datasets only contain data on the
early degradation states associated with catastrophic failures (e.g., data
on high levels of imbalance in a wind-turbine gearbox are extremely
rare). As the industry is reluctant to produce datasets with significant
numbers of failures, researchers are obliged to generate those data
in laboratories. Considering this industrial fact, the datasets tested in
each piece of research can be classified into three types: open access
benchmark, laboratory, and industrial datasets.

The first type, open access benchmark datasets, are publicly avail-
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able datasets that refer to different industrial processes and include d
different types of failures. They are not only useful for the validation
of new SSL techniques, but also to compare them with the accuracy
of state-of-the-art SSL methods. Some of the most common benchmark
datasets are:

• CWRU9 (Case Western Reserve University): a bearing defect
dataset whose features are vibrations in different (motor loads
and different fault levels) study cases. There are 4 classes in total
with balanced numbers of instances, 3 faulty (ball, inner race, and
outer race), and the normal/healthy state [170].

• IMS10 (Intelligent Maintenance Systems): a bearing database
available at the University of Cincinnati, consisting of 3 different
datasets. As in CWRU, these datasets focus on vibration data and
have 4 classes with the same 3 fault states as CWRU, but in this
case classes are more unbalanced than CWRU dataset [171].

• Paderborn University Dataset11: another bearing dataset with
vibrations features. There are 32 different classes, of which 6
are healthy states, and they are roughly balanced. The damaged
bearing classes can be joined into inner faults and outer faults.

• TEP12 (Tennessee Eastman Process): a chemical industry dataset
on a process that involves 5 main elements, namely a reactor, a

9 CWRU: https://engineering.case.edu/bearingdatacenter.
10 IMS: https://drive.google.com/drive/folders/1OTyArlkE6HVJ3BZLcsoOIj
CskMCbgtW.
11 Paderborn: https://mb.uni-paderborn.de/en/kat/main-research/datacente
/bearing-datacenter/data-sets-and-download.
12 TEP: https://ieee-dataport.org/documents/tennessee-eastman-simulation-

ataset#files.
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vapor–liquid separator, a recycle compressor, a product stripper,
and a product condenser. The dataset is composed of 52 fea-
tures, and there are 21 different fault types, that are unbalanced
represented on the dataset, 5 of which are unknown [33,172].

• NEU13 (Northeastern University): a dataset of steel surface de-
fect images. There are 1 800 images with 6 different fault types
(crazing, patches, rolled-in scale, inclusion, pitted surface, and
scratches). Despite the presence of multiple fault types, it is
remarkable that the classes are balanced.

It should be noted that the first three datasets refer to the degrada-
ion of bearings in mechanical chain analyzed on the basis of vibration
ata. This kind of industrial problem is usually disengaged (the degra-
ation of one bearing will not generate degradation in other bearings of
he mechanical chain) and each bearing will have a natural frequency
hat is easily isolated within the FFT spectrum. More complex problems
n mechanical chains like axis misalignment are not considered in
hese datasets. Only the TEP dataset includes failure in continuous no-
otatory process, such as chemical reactions, with an interconnectivity
etween failures, revealing a more complex relation between failures,
lthough they only take into account a limited set of possible failures.
inally, NEU dataset, based in images, is a very different approach
o FDD and cannot be directly compared with the other benchmark
atasets. These types of datasets are mainly close to balance between
ifferent classes, as was noted in their presentation.

The second type, laboratory datasets are designed to obtain data,
ainly from a testbed, including as many machine states as possible.
his dataset type is really useful in FDD problems where some kinds
f fault are very rare, because under laboratory conditions, all kinds
f faults can be caused and different levels of severity can be charac-
erized and tested (e.g., imbalance in a rotor can be tested at different
ell-characterized levels). These datasets have three main drawbacks

hat limit the direct use of the results obtained under real industrial
onditions. First, they are extracted from very well and over-sensorized
estbeds, far away from industrial conditions where the sensorization
s very much more limited (e.g., an accelerometer placed close to the
utting tool was used to evaluate cutting-tool wear in a machining
rocess, and a Kistler table was included in the experiment to measure
utting forces; under industrial machining conditions, coolant fluids
nd chip production make it necessary to distance the accelerometer
rom the tool tip, while a Kistler table is usually never used, due to its
ost). Second, the testbeds are a scale reproduction of real machines
e.g., a lab testbed for a windmill mechanical chain is usually around
/10 of an industrial one) and their performance might differ from an
ndustrial one. Finally, the cost of setting up these industrial experi-
ents complicates the repeatability of the research. Besides, it should

e outlined that these types of datasets are mainly balanced, because
nder laboratory conditions, testing failure conditions could be more
asily performed than under real industrial conditions. This fact creates
n extra-difference between industrial datasets and these datasets.

The third type, real industrial datasets, are the least common,
ecause they are the most difficult to obtain and industries are very
eluctant to let them be used for research. In addition, this type of
ataset will not often have all possible failures represented or will have
very limited number of failures levels, which complicates the ability

o create a model that is capable of predicting states across the entire
ata space (e.g., mechanical models usually use experimental data from

no failure and light failure levels to fix thresholds, but ML models also
require data from more severe failure states to achieve highly accurate
models). Besides, this kind of datasets are usually strongly unbalanced,
because under industrial conditions, test of failure conditions is difficult
and very expensive.

13 NEU: https://www.kaggle.com/datasets/kaustubhdikshit/neu-surface-
efect-database.
264
Fig. 6. Frequency of use of the different datasets in the articles under analysis. The
diagram depicts the most frequently used datasets, in addition to the other databases
referenced in 113 articles considering the nature of the industrial problem.

In most FDD research, at least one benchmark dataset and one labo-
ratory or real industrial dataset in a second stage are usual, to overcome
the limitations of the different type of datasets. If no extensive public
industrial dataset is available for research within a specific field, this
solution might be considered best practice.

When considering the level of labeled instances, usually the first two
types have all their instances labeled, while the industrial ones are the
only ones that have many unlabeled instances. Most researchers there-
fore only apply some of the labels when using open access benchmark
or laboratory datasets under SSL conditions. These datasets are not
actually semi-supervised, because all the instances are labeled (labels
are removed from some usually randomly chosen instances). A rare
counter example is found in [78], which used a completely unlabeled
set of data collected over several years relating to the operation of an
electrical network.

Fig. 6 shows the papers under review that are classified by the
dataset used for either training or testing purposes. As can be seen, the
most commonly used dataset for testing is CWRU. However, articles us-
ing other datasets are the most numerous with 113 appearances. Among
these articles, some refer to publicly available datasets, while others use
their own dataset for training and testing. Table A.2 in Appendix shows
the references classified by the dataset in use.

When analyzing the use of SSL methods in terms of the industrial
problem to be solved, we can see that there is no clear relationship
between any particular method and a specific problem; a fact that
might be expected, due to the novelty of SSL techniques and their
application to FDD problem. The popularity of the methods was almost
identical for each industrial issue, which shows that the decision to
apply SSL methods to FDD problems is based on the most commonly
used FDD methods, and not on specific methods for each industrial
problem. Moreover, no baseline method has been found with which
they may all be compared. These two conclusions demonstrate that the
use of SSL techniques for FDD problems is still far from being a standard
solution and will require extensive research in coming years to establish
reliable reference solutions for each industrial process against which to
test the new proposals. However, at the same time, that fact outlines
the interest and possibilities of future research into the application of
SSL to FDD.

Finally, two main industrial impediments have been found in this
research. Firstly, neither the SSL methods nor the use of unlabeled data
are clearly explained in several research papers, even though such an
explanation might be essential for an understanding of SSL methods.

https://www.kaggle.com/datasets/kaustubhdikshit/neu-surface-defect-database
https://www.kaggle.com/datasets/kaustubhdikshit/neu-surface-defect-database
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Fig. 7. Proposed set of best practices for Semi-Supervised Learning (SSL) in industrial scenarios.
Secondly, several pieces of research use high labeled percentages,
which hardly correspond with the real state of an industrial problem.
SSL is meant to be applied in situations where labels are scarce, and
FDD industrial problems are one of these situations, so testing high
labeled percentage makes no sense. For these reasons, neither strategy
should be applied in any future research.

7. Conclusions, best practices, and future trends

In this section, the analysis of SSL for FDD is concluded and a set of
best practices are proposed, which have been established as successful
solutions within this field over the last decade. The future within this
field is promising and some research trends that are likely to gain
attention over coming years are also described.

7.1. Best practices

The first attempt to apply a new Machine Learning technique is of-
ten far removed from the most optimal application method. Therefore,
during this first decade of using SSL for FDD, some of the proposed
strategies have shown some inconsistencies. The most common ones
are: (1) considering ML techniques and strategies that cannot be con-
sidered as SSL (e.g., mixing supervised and unsupervised methods and
eferring to them as semi-supervised), (2) the use of too-high a percent-
ge of labeled instances makes it difficult to justify the use of any SSL
ethod, for instance, in [88] 25% of the observations were unlabeled,

nd in [86] only 10% of the observations were unlabeled, whereas in
ther proposals fewer than 50% of observations were unlabeled, and (3)
he presentation of new though somewhat vague SSL methods, reduced
he chance of experimental repeatability.

The following set of good practices (see Fig. 7) are proposed, to
vercome these limitations in future works:

• Dataset related:

Use of common datasets. The use of a publicly available stan-
dard or reference datasets, such as those discussed in Sec-
tion 2.1 (CWRU, TEP, NEU, Paderborn. . . ), makes it possi-
ble to compare the results obtained with different models
and to replicate the experiments.
As different approaches and methods are usually proposed,
and as there is no one algorithm better than all the others,
the only way to compare in which specific cases or type
of problem one proposal may be better or worse than
265
another is to have a reference for their comparison. A
natural benchmark would be the use of common datasets
(problems). It can be especially important in industrial
environments, where the presence of noise in the data,
insufficient variables available in the observations, and the
need to perform certain transformations on the data can
ruin the learning capabilities of some algorithms.

Use of a realistic, industrial-type dataset. Datasets from real
industrial environments often have the characteristics of
being imbalanced, typically containing fewer observations
relating to error conditions than to normal operating con-
ditions, and perhaps no observations of some interesting
types of failures at all. The use of datasets with other
characteristics might yield unexpected results or only an
upper, perhaps unrealistic results boundary, which can be
obtained when used in a real-world situation.

Combine open access benchmark datasets with indus-
trial/laboratory datasets to validate new SSL techniques.

In the first place, the use of an open access benchmark
dataset to assure improvements under general FDD condi-
tions of any new SSL technique is advisable. Then, any new
research can test the performance of the new SSL technique
in either a laboratory or an industrial dataset, to show the
unique advantages of this technique for a well-defined FDD
industrial task.

Use of a reasonable percentage of labeled data. Ideally, using
a small number of labeled instances along with unlabeled
instances (presumably easier to obtain and less expensive)
is one way the problems associated with labeling the in-
stances needed to train the models can to some extent be
alleviated in SSL. However, some of the proposals under
review use high percentages of labeled instances for train-
ing, e.g., in [81], the authors used 50% labeled instances
for training, making it difficult to justify the use of SSL.
Although the size of the datasets for training can greatly
affect the accuracy of the model obtained, it should be
considered whether the use of a SSL algorithm makes sense
or not. The use of small, but almost completely labeled
datasets or the use of a large enough number of labeled
instances to train a supervised learning algorithm – even if
it represents a small percentage of a large dataset –, may
be the main reason for using the SSL approach: increased
accuracy while reducing the number of labeled instances is

unfeasible.
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Use of labeled datasets as a starting point. It is interesting
that a fully labeled dataset could be used as a starting
point. Although the process of selecting observations for
label removal may introduce random behavior or be biased,
it will allow the results predicted by the model to be
checked against known results. An aspect that is especially
important in industrial processes, where similar systems
may behave very differently and identifying the presence
of a fault, the specific way in which a system may fail, or
the degree of failure might even be impossible for people
with no industrial background.

• Comparative methods:

Provide comparisons between the proposed method and
supervised methods.

For reference purposes, the results should be obtained from
a supervised version of the proposed method or from one
or more typical supervised methods trained with only the
corresponding percentages of labeled data. In this way, the
improvement of incorporating unlabeled data over the use
of labeled data alone can be tested.

Using the same amount of labeled data to compare. Using
the fully labeled dataset to train a supervised model and
comparing its results with a semi-supervised model trained
with a low percentage of labeled data is not a fair com-
parison from which valid conclusions may not easily be
reached.

Quality testing of the methods by using cross-validation and
repetitions.

The use of 𝑘-fold cross-validation and repeat experiments
are common ML practices that yield better estimations of
the results than the model can achieve in a real environ-
ment. Practices that, unfortunately, are not usually found
in industry publications.

Assess the influence of the percentage of labeled data on the
SSL method.

The number of labeled items can greatly affect the per-
formance of learning methods, which often happens with
industrial process datasets. It is interesting to vary the
number/percentage of labeled data, in order to evaluate
how the learning method behaves.

• Explanation of the method:

Publish the source code. The availability of the source code is
paramount in any method that is either proposed or com-
pared. It facilitates any use of the methods and comparisons
between proposals. Publishing the source code is a common
practice in other research fields [173].

Explain the pseudo-code. Pseudo-code is a good tool for ex-
plaining new methods, but they must be accompanied by
a proper explanation.

Use a taxonomy to categorize the proposed SSL method. Cl-
assifying the proposed methods according to a taxonomy
facilitates the search for specific methods, helps readers to
categorize the proposals, and facilitates the classification of
the methods once reviewed. Some proposed methods may
be difficult to classify and help from the authors might be
appreciated. The use of a taxonomy (e.g., such as the one
proposed in [7]) may assist authors with the selection of
references and researchers with the selection of relevant
266

articles.
7.2. Future trends

On the one hand, as has been previously discussed in Section 6, the
most popular type of methods are generative, manifolds, and feature
extraction. Methods of this type will continue to be widely used because
of their proven effectiveness in the field. Nonetheless, other methods
that are rarely used nowadays, might become more popular in the
future. As with supervised learning [174], SSL can take advantage of
the improvement offered by boosting to enhance the performance of
co-training methods. An interesting boosting technique that could be
applied to SSL is statistical boosting [175] where boosting is no longer
a black-box method.

A potential future trend could be the extensive use of semi-
supervised SVM, which falls under the category of maximum mar-
gin methods. This would be a plausible development considering the
relatively low popularity of maximum margin methods compared to
other intrinsically semi-supervised methods, alongside the growing
popularity of SVM.

Moreover, some other SSL methods that have not been applied to
the field, such as pre-training, represent a a research pathway that,
coincident with the growing popularity of deep learning methods,
could yield promising results. A recent and up-to-date review of Deep
Semi-Supervised Learning can be found in [176].

Recently, the use of meta-learning in SSL FDD has been presented in
some works [119,137]. Nevertheless, its use has not been properly ex-
plored and FDD can benefit from meta-learning via deep learning [177]
among other approaches.

Besides, most of the reviewed articles are concerned with FDD in
bearings and gearboxes. The conventional proposal for such problems is
vibration measurement, frequency transformation, and statistical analy-
sis, although complex failures and industrial conditions with unlabeled
data are a natural border to this solution that new SSL-based ap-
proaches can overcome. As previously outlined, bearing analysis using
frequency spectrum might be the easiest FDD task in mechanical chains,
where coupled failures (e.g., axis misalignment) might lead to failure
states of more complex diagnosis. However, SSL might be a proper
solution, due to the lack of labeled instances in those complex failures.
Besides, the extension of the process information to other sources
of signals (e.g., electrical or power signals) of easy-to-measure under
industrial conditions, rather than vibration data, which are usually
more complex to be measure in industry, could open a more gener-
alized use of machine learning techniques and SSL in Industry 4.0. As
rotatory-based processes seem to be the most interesting and complex
in industry, solutions to rotatory-based problems where failures are
more difficult to detect also have a promising future (e.g., surface defect
detection or breakage of machining cutters). Any industrial process
working under conditions that are far from stable (e.g., windmill elec-
trical generation under real-variable wind conditions and machining
processes such as milling where the cutting paths cannot assure a
stable material removal rate) are promising fields of application for
SSL techniques. Those characteristics converge in other industrial tasks
where SSL has recently been tested for the first time, such as failures
in air separation units [28], automotive assembly [80], stirred tank
heater processes [81], solar photovoltaic arrays [45], laser powder-bed
fusion [145], chemical batch processes [143], and a wireless sensor
network [51]. It therefore shows that other industrial processes with
highly variable working conditions, complex behaviors and industrial
limitation on the labeling process, can benefit from the use of SSL
for FDD. Besides, the consideration of data imbalance combined with
unlabeled data will be a promising research line for FDD, due to the
high industrial demand for solutions under these conditions, specially
if costly and sensitive sensors, such accelerometers, can be avoided and
more reliable and easy-to-measure signals can be used in their place.

Finally, a problem that has frequently arisen in this research is the
difficulty of establishing a category for some methods. It shows that a
further revision of the Engelen & Hoos [7] taxonomy may be necessary

in this field for further development of the topic.
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Table A.2
References grouped by the datasets used. It must be noted that a reference can be in
more than one row if it uses more than one dataset.

Dataset References using the dataset

CWRU [19,30,38,39,41,50,57,66,71,73,76,90,93–
95,98,104,109,113,114,119,122,128,129,131,132,135,136,
138,140,141,151,154,157–160,166,178]

IMS [30,66,107,116,158,166]

Paderborn [76,118,140]

TEP [2,5,18,28,29,37,53,54,77,80,81,83,86,112,121,125,148]

NEU [23,126,142]

Other [3,4,19,28,29,39–51,55–60,63,65–69,75–78,80,81,84,85,87–
92,94,96–104,104,106–117,119–125,127–131,133–137,139–
147,149–153,155,156,158–161,163–165,178–182]
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