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Abstract 
 

This study presents a research that identifies and 

applies unsupervised connectionist models in 

conjunction with modelling systems, in order to 

determine optimal conditions to perform laser milling 

of metallic components. This industrial problem is 

defined by a data set relayed through sensors situated 

on a laser milling centre that is a machine-tool used to 

manufacture high value micro-molds and micro-dies. 

The results of the study and the application of the 

connectionist architectures allow the identification, in 

a second phase, of a model for the milling machine 

process based on low-order models such as Black Box, 

which are capable of approximating the optimal form 

of the model. Finally, it is shown that the most 

appropriate model to control these industrial tasks is 

the Box-Jenkins algorithm, which calculates the 

function of a linear system from its input and output 

samples.    

 

1. Introduction 
 

Laser milling consists on the controlled evaporation 

of material due to its interaction with a high-energy 

pulsed laser beam. A conventional milling machine 

knows in every moment the amount of material 

removed (the whole volume of its mill) but that is not 

so easy for a laser milling machine. Therefore, for the 

quick industrial spread of this technology is necessary 

to develop a model that can predict the exact amount of 

material that each laser pulse is able to remove. This 

model will allow the control of laser milling with the 

accuracy that microtools required and, also, the 

optimization of its manufacture. In this article we have 

developed such a model using a combination of 

conventional and AI models. 

Unsupervised learning can be used as a preliminary 

phase before the model is established. It is used to 

analyse the internal structure of the data sets in order to 

know whether the data sets are informative enough.  

Then, this research presents a two-phase process in 

order to identify the optimal conditions of industrial 

laser milling.  

 

2. Study of the Initial Data Set 
 

In this study, Exploratory Projection Pursuit (EPP) 

[1] connectionist methods as Cooperative Maximum 

Likelihood Hebbian Learning (CMLHL) [2] and also 

statistics ones as Principal Component Analysis (PCA) 

[3], [4], [5], [6] are applied in order to know whether 

the data is “informative enough”. In the worse case, 

experiments have to be performed again. 

EPP [7], [8] provides a linear projection of a data 

set, but it projects the data onto a set of basic vectors 

which best reveal the interesting structure in data; 

interestingness is usually defined in terms of how far 

the distribution is from the Gaussian distribution [9].  

One neural implementation is Maximum Likelihood 

Hebbian Learning (MLHL) [8], [10]. It identifies 

interestingness by maximising the probability of the 

residuals under specific probability density functions 

that are non-Gaussian. An extended version is the 



Cooperative Maximum Likelihood Hebbian Learning 

(CMLHL) [2] model. CMLHL is based on MLHL [8], 

[10] adding lateral connections [11], [2] which have 

been derived from the Rectified Gaussian Distribution 

[9].  

Considering an N-dimensional input vector ( x ), and 

an M-dimensional output vector ( y ), with 
ijW  being 

the weight (linking input j  to output i ), then 

CMLHL can be expressed [12], [13] as:  

1. Feed-forward step: 
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4. Weight change: 
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Where: η  is the learning rate, τ  is the "strength" 

of the lateral connections, b  the bias parameter, p  a 

parameter related to the energy function [2], [8], [10] 

and A  a symmetric matrix used to modify the response 

to the data [2]. The effect of this matrix is based on the 

relation between the distances separating the output 

neurons. 

 

3. Modelling the Process 
 

3.1. The Identification Criterion 
 

The identification criterion consists in evaluating 

which of the group of candidate models is best adapted 

and best described the group of data collected in the 

experiment; i.e., given a certain model )( *θM  its 

prediction error may be defined by equation (5); what 

wish to obtain is a model that complies with the 

following premise  [12]: a good model is one that 

makes good predictions, and which produces tiny 

errors when the observed data is applied, i.e., on any 

one data group  tZ  it will calculate the prediction error 

),( θε t , equation (5), in such a way that for any one 

t=N, a particular 
Nθ̂  (estimated parametrical vector) is 

selected so that the prediction error )ˆ,( Nt θε  in 

t=1,2,3…N, is made as small as possible. 

)|(ˆ)(),( ** θθε tytyt −= . 
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The estimated parametrical vector θ̂  that minimizes 

the error, equation (8), is obtained from the 

minimization of the error function (6). This is obtained 

by applying the least-squares criterion for the linear 

regression, i.e., by applying the quadratic 

norm 2

2
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3.2. Black-box Models 
 

The methodology of black-box structures has the 

advantage of only requiring very few explicit 

assumptions on the pattern to be identified, but that in 

turn makes it difficult to quantify the model that is 

obtained. The discrete linear models may be 

represented through the union between a deterministic 

and a stochastic part, equation (9); the term e(t) (white 

noise signal) includes the modelling errors and is 

associated with a series of random variables, of mean 

null value and variance λ. 

)()()()()( 11 teqHtuqGty −− += . (9) 

The structure of a black-box model depends on the 

way in which the noise is modelled  )( 1−qH ; thus, if 

this value is 1, then the OE (Output Error) model  is 

applicable; whereas if it is different from zero a great 

range of models are applicable; one of the most 

common is the BJ (Box Jenkins). This structure may be 

represented in the form of a general model, where  

)( 1−qB  is a polynomial of grade nb, which can 

incorporate pure delay nk  in the inputs, and )( 1−qA , 

)( 1−qC , )( 1−qD  y )( 1−qF  are autroregressive 

polynomials ordered as na, nc, nd, nf, respectively (10). 

In the same way, it is possible to use a predictor 

expression, for the on-step prediction ahead of the 

output )|(ˆ θty  (11). In Table 1, the generalized 

polynomial expressions are presented, as well as those 

that represent the polynomials used in the case of each 

particular model.   
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3.3. Procedure for Modelling the Laser Milling  
 

The identification procedure followed to obtain a 

parametrized model M, selected as the best of those 

that model the laser milling characteristics based on the 

variable measurements, is carried out in accordance 

with two fundamental patterns: a first pre-analytical 

and then an analytical stage that assists with the 

determination of the parameters in the identification 

process and the model estimation. The pre-analysis test 

is run to establish the identification techniques [12], 

[13], [14], [15], [16], [17], the selection of the model 

structure and its order estimation [18], [19], the 

identification criterion and search methods that 

minimize it and the specific parametrical selection for 

each type of model structure. 

A second validation stage ensures that the selected 

model meets the necessary conditions for estimation 

and prediction. In order to validate the model, three 

tests were performed: residual analysis ))(ˆ,( tt θε , by 

means of a correlation test between inputs, residuals 

and their combinations; final prediction error (FPE) 

estimated as explained by Akaike [20] and the 

graphical comparison between desired outputs and the 

outcome of the models through simulation one (or k) 

steps before. 

 

4. An Industrial Problem: Laser Milling of 

Metallic Microtools 
 

The purpose of this work presented is the study of 

the best conditions for laser milling of Alum 7010, 

often used in the mold industry, using a commercial 

Nd:YAG laser with a pulse length of 10µs [21].  Three 

parameters of the laser process can be controlled: laser 

power (u1), laser milling speed (u2) and laser pulse 

frequency (u3). The laser is integrated in a laser milling 

centre (DMG Lasertec 40). 

To simplify the industrial problem a test piece has 

been designed. This test piece consists on an inverted 

truncated pyramid profile that should be laser milled on 

a flat metallic piece of Alum 7010. As the laser 

parameters are not know for Alum 7010, both 

parameters will show an error called angle error (y1) 

and depth error (y2). We have applied different 

modelling systems to achieve the optimal conditions, 

those that provide the minimum errors of laser milling.  

The experiment design has been performed using a 

Taguchi L25 with 3 input parameters and 5 levels to 

include all the range of the laser milling process that 

can be change from the control of the machine, and 

therefore that can be modify by the end user of this 

machine. Table 2 summarizes input and output 

variables of the experiment. The experiment was 

performed on the test piece already described. After the 

laser milling, actual inverted pyramid depth and wall 

angle were measured by means of proper optical 

means. 

Table 1. Black-box models structures.  

 

Table 2. Variables, units and values used 

during the experiments. 
All values are common to this laser milling process. 

Output y(t), Input u(t). 

Variable (Units)Variable (Units)Variable (Units)Variable (Units)    RangeRangeRangeRange    
� Angle error of the test piece, y1(t)  

� Depth error on the test piece, y2(t)  

� Laser power in percent of the maximum power 
performed by the laser (%), u1(t). 

20-100 

� Speed   (mm/s), u2(t). 200-800 
� Laser pulse frequency (kHz), u3(t). 20-100 

 

4.1. Application of the two Phases of the 

Modelling System  
 

The experiments have been organized into two 

phases. 

Phase 1. Initial identification of the internal structure of 

the data set. Application of several unsupervised neural 

models. 

Phase 2. Final identification of the model that best 

defines the dynamic of the laser milling process. 

 

4.1.a. Phase 1. Figure 1 shows the results obtained by 

CMLHL. We can see that it has identified a clear 

structure, meaning that the data analysed is informative 

enough. 

Figure 1. Projection of CMLHL 
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We have also applied PCA. Both methods have 

identified a clear internal structure based on an initial 

classification but CMLHL (Figure 1) provides a sparser 

representation than PCA. 

 

4.1.b. Phase 2. Modelling Laser Milling by means of 

Classical Models.  

 

Figures 2 and 3 show the results of the output y1(t), 

angle error, and y2(t), depth error, respectively for 

different models, in relation to the polynomial order 

and the delay in the inputs. To obtain the maximum 

accuracy, we have considered various delays for all 

inputs and various polynomials order, which is [na, nb1, 

nb2, nb3, nc, nd, nf, nk1, nk2, nk3], in accordance with 

the structure of the models that have been used; see 

Table 1. X-axis of Figures 2 and 3 shows the number of 

samples used in the validation of the model, whereas 

the Y-axis represents the range of output variable.  

Table 3 shows a comparison of the qualities of 

estimation and prediction of the models obtained, as a 

function of the model, the estimation method, and the 

indicators, which are defined as follows: 

The percentage representation of the estimated model 

(expressed in “%”) in relation to the true system. This 

is the numeric value of the normalized mean error that 

is computed with one-step prediction (FIT1), with ten- 

step prediction (FIT10), or by means of simulation 

(FIT). Also, the graphical representation of true system 

output and the one-step prediction )|(ˆ
1 mty , the ten-

step prediction )|(ˆ
10 mty ,or the model simulation 

)|(ˆ mty∞
. 

The loss function or error function (V). This is the 

numeric value of the mean square error that is 

computed with the estimation data set. 

The generalization error value (NSSE). This is the 

numeric value of the mean square error that is 

computed with the validation data set. 

The average generalization error value (FPE). This is 

the numeric value of the criterion FPE that is computed 

with the estimation data set. 

 

Figure 2. Representation of measured output, simulated output and one-step-ahead prediction for 

two black–box models.  
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Model OE [   ]: Measured output 1 Step ahead predition 
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Model BJ [   ]: Measured output Simulated output 
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Model BJ [   ]: Measured output 1 Step ahead predition 
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The results showed in Figure 2 correspond to the 

output y1(t), angle error. The model generated by the 

OE model is shown in the upper row. On the left, 

measured ouput vs. simulated output, on the right, 

measured output vs. one-step-ahead prediction.  The 

BJ model is shown in row 2.  The validation data set 

was not used for the estimation of the model. The 

order of the structure of the model is [2 3 1 1 3 2 2 2 

1 1 ] according to the model type. The solid line 

represents true measurements and the dotted line 

represents estimated output. 

 

 

Figure 3. Representation of measured output, simulated output and one-step-ahead prediction for 

two black–box models.  



 
Model OE [   ]: Measured output Simulated output 

0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1 1.1
-1

-0.5

0

0.5

1

1.5
Measured True (solid line) and Estimate Output (dotten line)

 

Model OE [   ]: Measured output 1 Step ahead predition 
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Model BJ [   ]: Measured output Simulated output 
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Model BJ [   ]: Measured output 1 Step ahead predition 
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Figure 3 presents the results corresponding to the 

output y2(t), depth error. The model generated by the 

OE model is shown in the upper row. On the left, 

measured output vs. simulated output, on the right, 

measured output vs. one-step-ahead prediction. The 

BJ model is presented in row 2. The validation data 

set was not used for the estimation of the model. The 

order of the structure of the model is [2 1 3 1 3 2 2 1 

3 1 ] according to the model type. The solid line 

represents true measurements and the dotted line 

represents estimated output.  

It may be seen from Fig. 2 and 3 that the BJ model is 

capable of simulating and predicting the behaviour of 

the errors of the laser milling process as it meets the 

indicators and is capable of modelling better than 

98% of the true measurements. This is also evident 

from Table 3. Table 4 shows the function and the 

parameters that define the laser milling process, on 

the basis of the BJ model. The tests were performed 

using Matlab and the System Identification Toolbox. 

Similar results were found for the depth error.  

Table 3. Indicator values for OE and BJ models 
 Indicators and order  [na, nb1, nb2, nb3, nc, nd, nf, nk1, nk2, nk3 ] 
 Angle error Depth error 
Model    [1 2 1 1 3 

     2 1 2 2 2 ]  

   [2 2 2 1 3 

     2 2 2 2 1 ]  

   [2 3 1 1 3 

     2 2 2 1 1 ]  

   [1 2 1 1 3 

    2 1 2 2 2 ]  

 [2 2 2 1 3 

   2 2 2 2 1 ]  

   [2 1 3 1 3 

     2 2 1 3 1 ]  

Black-box model, 
OE model is 
estimated using 
the prediction 
error method 

FIT:12.87% 
FIT1:12.87% 
FIT10:12.8% 
V: 0.020 
FPE:0.047 
NSSE:0.010 

FIT:16.6% 
FIT1 :16.6% 
FIT10:16.6% 
V: 0.0124 
FPE:0.049 
NSSE:0.099 

FIT:51.76% 
FIT1 :51.76% 
FIT10:51.7% 
V: 0.021 
FPE:0.088 
NSSE:0.033 

FIT:5.21% 
FIT1:5.21% 
FIT10:5.21% 
V: 0.362 
FPE:0.844 
NSSE:0.31 

FIT:61.1% 
FIT1:61.1% 
FIT10:61.1% 
V: 0.29 
FPE:1.18 
NSSE:0.052 

FIT:48.7% 
FIT1:48.7% 
FIT10:48.7% 
V: 0.297 
FPE:1.233 
NSSE:0.0926 

Black-box model, 

BJ model is 
estimated using 
the prediction 
error method. 

FIT:38.3% 

FIT1:41.88% 
FIT10:39.3% 
V: 0.023 
FPE:0.106 
NSSE:0.0048 

FIT:41.65% 

FIT1:55.21% 
FIT10:27.2% 
V: 0.0066 
FPE:0.073 
NSSE:0.0029 

FIT:98.9% 

FIT1:98.62% 
FIT10:98.9% 
V: 0.0111 
FPE:0.155 
NSSE:2.7e-6 

FIT:51.55% 

FIT1:54.82% 
FIT10:44.5% 
V: 0.196 
FPE:0.875 
NSSE:0.071 

FIT:68.12% 

FIT1:63.02% 
FIT10:58.3% 
V: 0.138 
FPE:1.527 
NSSE:0.047 

FIT:99.8% 

FIT1: 99.8% 
FIT10:99.8% 
V: 0.023 
FPE:0.45 
NSSE:2e-27 

 

Table 4. Function and parameters that represent the behavior for the angle error.  
Model BJ    [2 3 1 1 3 2 2 2 1 1 ] 
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Parameters and polynomials. 

B1(q) = -0.001573 q
-2

 - 0.001705 q
-3

 - 0.001045 q
-4

              D(q) = 1 - 1.801 q
-1

 + 0.9602 q
-2

                                  



B2(q) = -4.85e-5 q
-1

                                              F1(q) = 1 + 0.4735 q
-1

 + 0.1797 q
-2

                                

B3(q) = 0.001323 q
-1

                                                F2(q) = 1 - 0.4525 q
-1

 + 0.8133 q
-2

                                

C(q) = 1 - 1.548 q
-1

 + 0.5537 q
-2

 + 0.2632 q
-3

                   F3(q) = 1 - 0.5514 q
-1

 + 0.09725 q
-2

                               

 e(t) is white noise signal with variance 0.0834 

 

5. Conclusions and Futures lines of Work 
 

This research has presented an investigation to 

identify the most appropriate modelling system to 

solve a real-life industrial problem such as laser 

milling of metallic components. Several methods 

were investigated to achieve the best practical 

solution to this interesting problem. The paper shows 

why, from among the classical models, the BJ model 

is the one that is best adapted to this case in terms of 

identifying the best conditions and predicting future 

circumstances. 

The novelty of the paper lies in the use of a two-

phase model for modelling of the laser milling 

process: a first phase, which applies EPP 

connectionist processes to establish whether the data 

set is “informative enough”. As a consequence, the 

first phase eliminates one of the problems that these 

identification systems have, which is that of not 

knowing beforehand if the experiment that generates 

the data group can be considered acceptable and will 

present sufficient information in order to identify the 

overall nature of the problem. Future work will be 

focus on the study and application of another kind of  

materials, such us copper or steel. 
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