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Abstract: Kinematic chains are crucial in numerous industrial settings, playing a key role in various
processes. Over recent years, several methods have been developed to monitor and maintain these
systems effectively. One notable method is the analysis of infrared thermal images, which serves as a
non-invasive and effective approach for identifying various electromechanical issues. Additionally,
Virtual Reality (VR) is a burgeoning technology that, despite its limited use in industrial contexts,
offers a cost-effective and accessible solution for the training and education of industrial workers on
specialized engineering subjects. Nevertheless, most virtual environments are based on numerical
simulations. This paper presents the design and development of a Virtual Reality training module
for the detection of fourteen electromechanical fault cases in a kinematic chain. The VR training
tool developed is based on actual thermographic data derived from experiments conducted on
an authentic kinematic chain. During these experiments, thermal images were captured using an
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Academic Editors: Klaudia 1. Introduction

Proniewska and Agnieszka Kinematic chains are designed and implemented in different configurations and,
Pregowska as such, they are relevant in multiple industrial settings. A kinematic chain consists of
interconnected electrical and mechanical components designed to perform a specific task
or function. Common elements in kinematic chains include induction motors, pulleys,
gearboxes, and mechanical loads. In addition to these main elements, kinematic chains
contain other secondary but no less important elements, such as bearings [1], gears [2]
and elements inside the motors themselves [3], which are also susceptible to failure. To
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maintain reliable operation, kinematic chains often employ strategies such as preventive
BY maintenance and early fault detection [4].
Copyright: © 2024 by the authors. In recent years, the training of technical and engineering personnel in the detection
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non-invasive approaches have gained prominence in the fault detection field, including
infrared imaging or thermography. This technique measures surface temperatures by
quantifying infrared radiation. Initially, the adoption of infrared image analysis as a fault
detection method for kinematic chains was hindered by the closed architectures and high
costs associated with infrared sensors [8]. Nowadays, infrared cameras, which are used
to measure infrared radiation, have become more affordable and accessible to the wider
public. Additionally, some models of these cameras provide users with access to the raw
data from the measurements.

All these techniques are commonly used in industrial environments, but are not so
often available in training facilities. Advances in Virtual Reality (VR) technology could
solve this limitation, because recently VR have significantly improved interactivity and
reduced overall operating costs, accelerating the development of new and effective train-
ing solutions [9]. In the field of maintenance engineering, VR is particularly relevant, as
it allows specialized laboratories and test benches to be reproduced with a high degree
of similarity [10]. Traditional training methods often involve significant costs and risks
associated with the physical equipment and environments required. VR mitigates these
challenges by providing a safe, cost-effective, and highly interactive learning platform.
It allows unlimited repetition of training exercises, critical for mastering complex tasks
and procedures, and ensures that technicians can practice extensively without time con-
straints or logistical demands. VR enables accurate and efficient learning, reducing training
times while improving the visualization and understanding of complex content. Unlike
traditional on-screen 3D applications, which are often limited in interaction [11,12], VR pro-
vides immersive and interactive experiences that often result in better learning outcomes
compared to 2D interfaces, as they offer practical, hands-on experiences within tailored
training programs [13]. So far, VR is used for applications related to machine assembly and
disassembly, as well as for testing under extreme conditions [14], with some examples of
use in training specifically on topics related to induction motors [10]. The primary goal
of these VR applications is to provide hands-on experiences within a tailored training
program that certifies user competency in environments that are hazardous, complex, or
prohibitively expensive to replicate in traditional settings [15].

This paper introduces the design and development of a new Virtual Reality tool in-
tended to train engineers in electromechanical fault detection. Preliminary findings from
this research were previously discussed in [10]. The contribution of this tool is the integra-
tion of a new set of experimental thermal data acquired with an infrared camera and the
development of a new analysis technique for electromechanical fault detection in a virtual
environment. The experiments were performed using a kinematic chain composed of an
induction motor, an output pulley, a transmission belt, and a mechanical load. The faults
incorporated into the design primarily pertain to the induction motor within the kinematic
chain, including bearing defects of various sizes (1 mm to 5 mm), 1 and 2 broken bars,
unbalance, and misalignment. Additionally, the experiments considered four conditions of
progressive gear wear: healthy, 25%, 50%, and 75%. This way, a total of fourteen different
fault cases were studied. The thermographic images underwent processing to incorporate
a pseudo-color map and to compute their temperature histogram. Afterward, fifteen statis-
tical features were calculated for each histogram. The data collected were integrated into
a Virtual Reality environment designed to function as a tool for maintenance engineers
and technicians to acquaint themselves with common faults in kinematic chains. Finally,
a comprehensive evaluation was conducted with a group of vocational training students
specializing in electrical and automation installations to assess the effectiveness and ap-
plicability of the VR training module. This approach not only enhances the realism of the
training but also bridges the gap by offering hands-on experience in a controlled, risk-free
virtual setting, significantly advancing current training practices.
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2. Background Materials and Methods
2.1. Faults in the Kinematic Chain

Kinematic chains consist of electrical and mechanical elements. These components are
frequently subjected to harsh conditions that can degrade their performance, leading to
failures within the kinematic chain. Faults in a kinematic chain are typically categorized into
electrical faults and mechanical faults [4]. The most prevalent causes of faults in kinematic
chains include manufacturing defects, thermal stress, inadequate lubrication, electrical and
mechanical overload, and electromagnetic disturbances affecting the induction motor [6].

2.2. Thermographic Image Processing

Digital thermographic image processing typically unfolds in three phases: pre-processing,
segmentation, and feature extraction [16]. In the preprocessing stage, raw data captured
by the infrared sensor are transformed into a digital image. This stage also involves mor-
phological operations on the image, such as resizing, enhancing contrast, and applying
pseudo-color [17]. Resizing involves interpolating existing data to generate new informa-
tion. Two of the most commonly used methods for resizing infrared images are bilinear
interpolation and bicubic interpolation [18].

(1) Pseudo-color: Pseudo-color application is a digital image processing technique
that assigns a specific color to each intensity value in a grayscale image using a function
or table [19]. Intensity scaling is a straightforward technique used to map a pseudo-color
table to an infrared image [18]. Let [0, L — 1] represent the gray levels in an infrared image,
where [y denotes black ([f (x, y) = 0]), and IL — 1 correspond to white ([f (x, y) = L — 1]).
Suppose that P different intensity planes exist at levels Iy, I, ..., | p,;. Assuming that
0 <P <L —1, the P planes divide the grey range in P + 1 intervals, 1,12, 13, ..., p,1. The
intensity of pixel (x, ) maps with color ck as expressed on (1):

fry)=a e fxy) €l (1)

Color ck is associated with the intensity interval I, defined by the planeson =k — 1
yl=k

(2) Image histogram: The histogram of a greyscale image is a discrete function that
represents the intensity distribution through all pixels on the image. Let r, fork=0, 1, 2,
..., L — 1be defined as the intensity value on a digital image (f(x, y)) with L different grey
levels. The histogram h(ry) of image f is defined by (2):

h(re) = ng 2
where 71y is the total number of pixels on f with an intensity value equal to r¢ [19].

2.3. Statistical Features

The histogram of an infrared thermal image can be treated as a discrete signal, as it
represents the temperature distribution across a specified number of intensity values or
bins. Let h[n] be the nth value of a discrete histogram signal h wheren =1,2,3, ..., N and
N is the total number of windows in /. Equations (3)-(17) are defined to describe the fifteen
statistical features.
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2.4. Virtual Reality

Due to significant technological advancements, the widespread adoption of Virtual
Reality technologies in training processes has increased substantially. Affordable VR head-
sets are now accessible in the market, bolstered by swift advancements in robust graphics
processors and lifelike video game engines [20]. These advancements have positioned VR
as a viable and efficient tool for education and training. However, the use of VR in training
programs is intended to complement, not completely replace, hands-on sessions with actual
equipment. Rather, it enhances traditional methods by offering several advantages. VR al-
lows for the unlimited repetition of training exercises, which is vital for mastering complex
tasks and procedures. This capability enables technicians to practice extensively without
the constraints of time and the logistical demands associated with physical setups. More-
over, VR can significantly reduce the costs associated with the acquisition and maintenance
of physical tools and materials. This cost-effectiveness is further amplified by the ability to
quickly update training programs to reflect the latest technological innovations and indus-
try practices without the need for additional physical resources. VR environments provide
a safe space for technicians to experience and interact with potential equipment failures
and emergency scenarios without the risk of damaging expensive equipment or causing
real-world accidents [21]. This aspect is particularly valuable in industries where the equip-
ment is costly, and the risks associated with errors are high. Unlike traditional training
settings where the trainer often controls the learning process, VR offers a learner-centered
approach. This method allows trainees to manage their own learning experiences, engaging
actively and critically with the material. Such interactive and immersive experiences are
more effective than other methods like web-based or video tutorials, as they better simulate
real-world environments and scenarios. The user is in control of an interactive learning
process, thus enabling active and critical learning [13]. On the other hand, the use of VR
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headsets in training also involves safety and ethical considerations. VR headsets should
be ergonomically designed to prevent discomfort and potential health issues such as eye
strain or motion sickness [22]. Additionally, ethical considerations include ensuring the
privacy and data security of the trainees, as VR systems often collect and store user data
for performance analysis. Proper measures should be implemented to protect this data
and maintain confidentiality, ensuring that trainees” personal information is secure [23].
Also, designing effective VR applications for training involves four key objectives include
interaction, immersion, user involvement, and, to a lesser extent, photorealism [24]. The
design should feature clear inputs and outputs, short- and long-term goals to shape the user
experience, and a well-structured learning ramp for beginners. Finally, the performance
of the VR application must be evaluated, considering key factors such as the evaluation
method, the number of testers, and the existence of a reference group. Proper evaluation
ensures that the VR training tool meets its educational and training goals effectively.

3. Materials and Methods

This study introduces a Virtual Reality application designed for training in fault
diagnosis on kinematic chains using thermography analysis. The architecture of this VR
application is outlined in Figure 1 and is discussed in detail in the subsequent subsections.

3.1. Acquisition and Processing of Thermal Images
3.1.1. Thermal Image Acquisition

The experiments were performed on a kinematic chain (Figure 1) composed of the
following elements:

Three-phase induction motor, an output power of 0.74 kW (1 HP).
Output pulley.

Transmission belt.

Alternator as a mechanical load.

Additionally, for the gear wear experiments a gearbox with a reduction ratio of 4:1
was connected to the motor shaft. By connecting mechanical elements to the induction
motor, a kinematic chain was created. With this kinematic chain it was possible to study
not only the failures that directly affect the induction motor, such as bearing damage or
rotor bar damage, but also to study failures in the other mechanical components (failure
in the gearbox) and failures in the connection of the different elements (misalignment
between the motor and the alternator). The point of studying these faults was to observe
whether the existence of faults external to the engine affects its operation. The induction
motor ran under an estimated 10% load through all experiments. During the experiments,
the electromechanical faults considered included 1 and 2 broken rotor bars, misalignment
between the induction motor and the alternator, mass unbalance at the output pulley, and
bearing defects. These bearing defects were artificially induced using a drilling machine,
with progressively increasing diameters for five fault cases on the external race: 1 mm,
2 mm, 3 mm, 4 mm, and 5 mm. Four gears were manufactured to induce uniform wear on
all teeth in order to replicate four different fault cases in the gearbox: healthy, 25% wear, 50%
wear, and 75%. The data acquired served for the development of the diagnostic-training
tool in the VR system.

During the experiments, thermal images of the kinematic chains were captured using
a FLIR Lepton 3.5 infrared camera. There are other thermal imaging cameras on the market,
but when comparing the FLIR Lepton 3.5 thermal imaging module with other commercial
thermal imaging camera models it becomes evident that the resolution of the thermal
sensor is equal or superior to the models shown in Table 1.

The sampling rate is the same for all thermal imaging cameras with a value of 9 Hz.
However, the price of the FLIR Lapton 3.5 compared to the other models makes it a more
affordable option for the thermographic study of induction motors. In addition, the size
of the module allowed it to be integrated into an embedded system together with other
components such as the PureThermal 2 module and Raspberry Pi 4. The camera was
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positioned 0.8 m away from the test bench, the infrared sensor was directed at the side of
the induction motor. Each experiment ran for 90 min, with the thermal camera capturing
images at a frame rate of 1 picture per minute. In the VR design, only thermal images from
the last 30 min of each test runtime were included, considering that an induction motor
typically reaches thermal equilibrium after one hour of continuous operation. The raw data
from these thermal images were stored in a database to provide authentic information to
the virtual environment.

Fault conditions
of the kinematic chain

%C)

7 8" Unbalance

Bearings sl ]

3D Model 3D Model 3D Model
+ +
Realistic Thermal
texture texture

Virtual Reality
Training module

3D Environment

Environment

Integration of Acquired Raw Data and Heatmaps textures
in Virtual reality environment

Figure 1. Methodology Diagram.
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Table 1. Comparison of Commercial Thermal Imaging Camera Features.
FLIR LEPTON 3.5 FLIR E5-XT FLUKE PTi120
Resolution (px.) 160 x 120 160 x 120 120 x 90
Temp. range —10°Ca 400 °C —20°Ca400°C —20°Ca400°C
Sampling frequency 9Hz 9Hz 9Hz
Dimensions 11.8 x 12.7 x 7.2 mm 244 x 95 x 140 mm 89 x 127 x 25 mm
Price (USD) 164 1629 1075

3.1.2. Thermal Image Processing

Since the original resolution of the thermographic images obtained by the FLIR Lepton
3.5 sensor is 160 x 120 pixels, it becomes difficult to appreciate the differences on a conven-
tional screen or in this particular case, on the screen of the VR device, so the interpolation
allows generating new data that enlarge the thermographic image, allowing users to appre-
ciate the temperature differences in the thermographic image with pseudo-color applied.
The low-cost infrared camera employed in this setup featured an integrated radiometry
mode, which provided a temperature value, denoted as Cy, directly proportional to the
actual temperature of the observed scene, measured in Kelvin (Tx). Equation (18) presents
this temperature function, where (x, ) denotes a pixel on the thermal image:

CV (x,y) =100 - TK (x, v) (18)

The image processing system computed a histogram for each image in the database
using Equation (2). The horizontal axis of each histogram represents the temperature,
measured in Kelvin (K), by the infrared sensor, while the vertical axis indicates the number
of pixels associated with each temperature level. These histograms were instrumental in
depicting the thermal characteristics of the induction motor for each fault state consid-
ered during the experimentation as a discrete one-dimensional signal. Furthermore, the
processing system resized all thermal images to a target size of 1600 x 1200 pixels using
bicubic interpolation. This resizing was necessary to enhance the contrast and quality of
the pseudo-colored images generated through the intensity scaling method defined by
Equation (1). Since the captured thermographic images were pre-processed on a personal
computer (PC) before being used in the VR system, the computational time required to
achieve the interpolation was not an impediment and therefore the bicubic interpolation
algorithm was chosen as it provides better results in the resolution of the images. Also, the
jet color map served as a reference for coloring the thermal images based on the association
of this color palette with temperature and heat maps. Pseudo-color images offer a more
intuitive representation of the infrared data to a human observer Fifteen statistical features
were calculated from each histogram: mean (3), maximum (4), RMS (5), SMR (6), standard
deviation (7), variance (8), form factor (RMS) (9), form factor (SMR) (10), crest factor (11),
latitude factor (12), impulse factor (13), skewness (14), kurtosis (15), 5th moment (16), and
6th moment (17). These statistical indicators were saved in a 180 x 15 table for each of the
fourteen fault cases.

The main software tool used for the acquisition and processing of the thermographic
images was the OpenCV library in the Python (Python 3) and C++ (C++11)development
environment. One of the challenges encountered during the development of the work
was to automate the capture of the thermographic images following a sampling frequency
determined by the user and to save the captures in an uncompressed image format that
would allow to analyze the radiometric data of the scene in order to be able to measure
the temperature of the engine and the mechanical components connected to it in the
thermographic image. This challenge was solved by designing a Python script for the
Raspberry Pi 4 that captured the images automatically at each given time cycle and saved
the images in “.tiff” format that allows a resolution of 16 bits as opposed to the “.jpeg”
format that only allows working with 8 bits. A total of 420 thermal images were acquired
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and processed. These images were associated with 14 different fault conditions in a
kinematic chain. Each thermal image was originally acquired as a grayscale pixel array
that store the apparent temperature of the induction motor and the kinematic chain. After
the grayscale thermal image was captured, a pseudo-color palette was added according to
the intensity scaling method (1) in order to improve the perception of temperature changes
in the image for the user The image histogram was calculated from the original grayscale
thermal image to obtain a discrete function (2) representing the temperature through all
pixels in the infrared thermal image as can be seen in Figure 2, where colors refers to a
temperature scale.
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Figure 2. Thermal image in pseudo-color palette with its associated discrete histogram.

Fifteen statistical features were calculated from these histograms using Equations
(3)—(17). Figure 3 shows graphic representations of the clustering observed on the statistical
features according to each of the fourteen fault conditions. In Figure 3A, the six fault
conditions on the bearing (healthy, 1 mm, 2 mm, 3 mm, 4 mm, 5 mm) were clustered using
the mean (3), SMR (6), and 6th moment (17) features. In Figure 3B, four fault conditions
commonly found on kinematic chains (one broken bar, two broken bars, unbalance, and
misalignment) along with a reference case (healthy) were clustered using the 6th moment
(17), mean (3), and standard deviation (7) features. Finally, Figure 3C shows the data
clusters for the four gear wearing cases (0%, 25%, 50%, and 75%) using the mean (3), RMS
(5), and standard deviation (7) features.

o AT

MAL

6th Moment

=———~
120 140 298 27 28
SMR w e 80 10 Mean 32 31 3 29 28

6th Moment Std. Deviation

Figure 3. Statistical features clusters according to the detected fault condition on: (A) bearings,
(B) kinematic chain, and (C) gearbox.

3.2. Development of Virtual Reality Application

This section discusses the development and application of a training tool for induction
motor maintenance based on real thermographic data, utilizing Virtual Reality (VR) technology.
The application allows users to engage in a self-guided exploration, directly interacting with
and solving problems related to induction motors. Developed to take advantage of the unique
educational benefits of VR, this training tool offers a triple educational experience: it provides
a vivid and realistic environment for learning and diagnosing VR; it creates a risk-free zone,
where learners can experiment and rectify errors without real-world consequences; and it
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delivers instant feedback on the users’ actions and decisions. This approach departs from
traditional, theory-heavy educational methods, embracing a practical “learning by doing”
strategy. Such a hands-on, immersive environment is intended to enhance engagement and
focus on practice over rote memorization, aligning with learners’ growing preference for
interactive and applied learning experiences. The development of this application involves
two main phases, 3D modeling and environments, and interaction design.

3.2.1. D Modeling

In the creation of the 3D models, the first step is to shape the object using polygons, as
can be seen in Figure 4A. Polygons are the fundamental building blocks of 3D models, with
their vertices, edges, and faces forming the complex geometries required for detailed and
realistic objects. The polygonal modeling process involves manipulating these elements to
accurately represent the real object. Once the basic shape is established, UV mapping is
performed on the model. UV mapping is a critical technique that involves unwrapping
the 3D model onto a 2D plane, allowing for the accurate application of textures. This
technique allows projecting a 2D image onto a 3D model’s surface. It can be either a texture
that simulates a realistic appearance, as shown in Figure 4B, or the heat map texture that
will be seen through the thermal camera, as depicted in Figure 4C. UV mapping requires
meticulous adjustment to ensure that textures align perfectly with the model’s geometry,
avoiding any distortions or seams that could detract from the visual quality. Achieving
photorealism involves detailed texturing and high-resolution images. In this case, we
use 2K textures, which achieve a good balance between quality and optimization. Since
these models are intended for a standalone application, optimization must be present in
all processes. Performance optimization is another critical aspect addressed in the de-
velopment of 3D models for standalone HMDs (head-mounted displays). These devices
have limited processing power and memory compared to PC-based systems, necessitating
careful optimization of models to ensure smooth performance. Techniques such as reducing
polygon count, optimizing texture sizes, and baking lighting information into textures
(lightmaps) were employed to maintain high visual quality without compromising perfor-
mance. This balance is important since research shows that learning motivation in virtual
environments is directly proportional to the quality of the 3D models represented [25]. The
tools utilized in the development of these models include Blender™ for modeling and
Substance Painter™ for texturing. Blender™ provides a comprehensive suite of tools for
polygonal modeling, allowing for detailed and complex designs. Substance Painter™ is
used for texturing, providing advanced features for creating realistic materials and textures,
including support for PBR (Physically Based Rendering) materials that enhance realism
through accurate simulation of how light interacts with different surfaces.

Figure 4. Induction motor 3D model. (A) polygonal design, (B) realistic textures, and (C) heat map.

3.2.2. Environments and Interaction Design

Developing a virtual environment that closely mimics the real world is essential to
create these Virtual Reality training tools. Unreal Engine 5 has been selected for this
purpose. Renowned for its photorealistic capabilities and visual coding system, this game
engine stands out. Moreover, it enables the integration of data from other simulation
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programs, facilitating real-time data acquisition or integration from pre-recorded files.
To generate the VR environments, the 3D models previously created are imported into
the game engine. This process involves arranging the models within the scene, applying
textures, and setting up lighting to mirror real-world conditions. Lighting is one of the
most difficult parts of a project. Bad lighting can ruin photorealism. In addition, and since
Unreal Engine 5 is a real-time engine, it is very important to keep the lighting as optimized
as possible. The most effective strategy is to pre-calculate the lighting and minimize the
use of real-time lighting, which can heavily impact performance. Since the application
is designed to function on standalone head-mounted displays (HMDs), it is imperative
to manage resource use judiciously. Standalone HMDs have less processing power and
memory compared to PC-based systems. Therefore, optimizing the graphical elements,
particularly the lighting and texture resolutions, becomes even more critical. This involves
simplifying scenes where possible, using lower-resolution textures, and baked lighting to
reduce the demand on the device’s GPU.

Additionally, one of the primary advantages of Virtual Reality is interactivity. It is
crucial for this application to enable users to interact with all objects in the environment.
The development of these interactions with objects and data integration was expedited by
leveraging a predeveloped framework [26]. This streamlined the development process by
utilizing pre-programmed utilities such as object manipulation, evaluation manager, and
metric tools. The interaction design for this experience prioritizes accessibility for novice
VR users. Accordingly, special emphasis was placed on simplicity by employing only one
button on the touch controls for picking up and dropping objects. As a result, out of the
three fundamental forms of interaction in VR (selection, manipulation, and locomotion),
the user only needs to concentrate on object manipulation.

To master these interactions, an initial tutorial was designed to familiarize users with
the fundamental controls required for grasping and positioning objects. Beyond providing
step-by-step instructions on the assembly process, the central aim of this phase is to help
users overcome the novelty effect. This term refers to the initial learning curve and potential
disorientation encountered when interacting with a new interface or technology for the
first time. By adopting this hands-on and guided approach, the users become comfortable
and proficient with the system from the outset, thereby facilitating a smoother and more
rewarding experience in subsequent stages.

The subsequent stages of the VR application were devised to aid in the training of
maintenance engineers on the subject of detecting multiple faults in a kinematic chain
through thermal image analysis. The VR tool incorporates thermal data obtained from
experiments conducted on an actual kinematic chain. The faults considered include 1 and
2 broken rotor bars, misalignment between the induction motor and the alternator, mass
unbalance at the output pulley, bearing faults (ranging from 1 mm to 5 mm defects), and
gear wear (25%, 50%, 75%). Additionally, a control test was conducted with all components
of the kinematic chain in a healthy state.

Figure 5 shows the designed workspace in the virtual environment. In it, the user
has to select, organize and integrate information within a limited working memory. This
application is designed to support these constraints. Instructions are presented to the user
on a whiteboard right in front of them (Figure 5B). On the left side, there is a drop-down
menu where the user can choose between different faults (Figure 5C). To its right, the
temperature histogram of the selected fault is displayed as shown in Figure 5D. The user
interface (UI) design principles were crucial in creating an intuitive and effective training
tool. These principles include simplicity, consistency, and providing immediate feedback.
The simplicity principle was adhered to by limiting the control inputs to a single button,
making the interface easy to use for beginners. Consistency was maintained across the
interface to ensure that similar actions led to predictable outcomes, reducing cognitive load.
Immediate feedback was given to users to confirm their actions and guide them through the
process, enhancing the overall user experience. This UI design helps minimize cognitive
load during the learning process by organizing information clearly and accessibly.
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Figure 5. Workspace on RV tool for electromechanical fault detection through thermography.
(A) VR infrared camera, (B) user instructions, (C) drop-down menu where the user can choose
between different fault, (D) temperature histogram representation of the selected fault, and (E) 3D
plots to comparison of different faults.

The proposed procedure to be followed by the user is based on (1) choose one of the
faults from the drop-down menu as show in Figure 5C. (2) Facing him a thermographic
camera will be able to observe the selected fault in the kinematic chain. (3) On the right
side, there is a dissected model where the selected fault can be viewed in detail as shown
in Figure 5D. (4) Above this model a panel shows the fault histogram. Furthermore, the VR
tool generates a graphical comparison between the healthy histogram (depicted in blue)
and the faulty histogram (illustrated in red), as can be also seen in Figure 5D. Additionally,
users have the freedom to interact with the data presented in the virtual environment,
enabling them to gain a deeper understanding of the fault information. (5) To achieve an
even deeper understanding of the comparison between faults, 3D plots have been added to
allow the comparison of different faults. This type of graphics is especially useful in Virtual
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Reality since the user does not rotate them manually as they would on a flat screen. Thanks
to being immersed in the graph it is possible to perceive the volume and detect clusters or
outliners more easily as can be seen in Figure 5E. This tool also allows to manually select
the variables to visualize and create its own graph to perform the desired comparisons.
When the user decides that it is ready to test the acquired knowledge, it can advance to the
next level. At this level, the user will find a kinematic chain with failure. With the help of
the thermal imaging camera and the graphs will have to decide what type of failure has
occurred. The feedback in this test is immediate and can be performed unlimited times as
the fault that is presented is randomly performed.

Upon completing the experiment, the system displays performance data, allowing
the user to review and analyze how well they identified and understood the faults. This
feature is designed to provide valuable feedback by highlighting areas of strength and those
needing improvement. The performance data include various metrics such as the number
of correctly identified faults, the time taken to diagnose each fault, and the accuracy rate
across multiple attempts. This detailed feedback helps users understand their performance
in depth and identify specific areas where they can improve. Additionally, the system
offers the option to repeat the experiment multiple times. This repeatability is crucial
for learning, as it enables users to refine their skills through continuous practice. Each
repetition allows users to encounter different fault scenarios, providing a comprehensive
understanding of the kinematic chain and its potential failures. This exposure to a variety
of faults ensures that users are not just memorizing specific cases but are developing a
robust diagnostic skill set that can be applied in real-world situations. The iterative learning
process facilitated by the VR system is essential for mastering the diagnostic techniques
in a virtual environment. By repeatedly practicing in a simulated setting, users can build
confidence and proficiency without the risk associated with real-world equipment. This
method of learning also allows for immediate application of feedback, enabling users to
make adjustments and see improvements in subsequent attempts. Moreover, the ability
to visualize performance data through graphical tools such as 3D plots and histograms
enhances the learning experience. These visual aids help users to better understand their
progress and performance trends over time. The combination of detailed feedback, repeat-
able practice, and visual performance tracking creates a powerful learning environment
that significantly enhances the user’s ability to diagnose and understand faults in kinematic
chains. This Virtual Reality module is available as Supplementary Material and can be
downloaded at: https:/ /xrailab.es/cases/induction-motors/ (accessed on 21 June 2024).

4. Evaluation

This application was tested with a sample of students from the Vocational Training
program in Electrical and Automatic Installations. The general competency of this qualifica-
tion involves assembling and maintaining telecommunications infrastructures in buildings,
low voltage electrical installations, electrical machines, and automated systems. Therefore,
this application can become an effective solution for learning the assembly and mainte-
nance of electric motors in such studies. The study sample consisted of 20 s-year students
(mean age = 20.1 years old, all male). The learning experience has four stages: pre-test,
learning experience with VR training module, experience assessment questionnaire, and
finally, a knowledge test. The learning experience began with a pre-test to assess the
previous knowledge of the students. This test was created with the help of the teachers
of the Vocational Training program in order to be as aligned as possible with the learning
objectives of the VR module. It consisted of four multiple-choice questions (MCQ) and one
image-based question to identify the different components of an electric motor. The pre-test
can be consulted in the Supplementary File. The VR training module was conducted in the
school’s laboratories with Meta Quest 3 devices, used in standalone mode as can be seen in
Figure 6.
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Figure 6. Students using the VR training module.

This VR training module was designed so that users could progress through different
levels and advance towards the following goals: Identification of the fundamental com-
ponents of induction motors and basic arrangements and identification of the operating
state under the influence of induction motor faults with thermography. The time of use of
the application varied between 15 and 20 min. An experience assessment questionnaire
was administered immediately after the educational experience aimed to measure student
satisfaction, covering several key aspects: presence, immersion, usability, cybersickness
and satisfaction. These aspects were assessed with twenty-five questions using a five-point
Likert-type scale, where (1) indicates “strongly disagree” and (5) represents “strongly
agree”. This approach allows for a nuanced understanding of students’ perceptions across
different dimensions of the educational experience, facilitating targeted improvements
based on specific feedback. This questionnaire can be consulted in the Supplementary
File. The results show a fairly high presence (69%) but a relatively low immersion (65%).
This suggests that a majority of students felt engaged and “present” during the experience.
However, there’s room for improvement in enhancing the sense of being “there” within
the educational setting. This may be attributed to the fact that, as seen in the image, users
shared a space which was relatively small, and the head-mounted display (HMD) used did
not have immersive audio. On the other hand, a positive usability score (72%) indicates that
most students found the educational tools easy to use. This is crucial for smooth learning
experiences and minimizing frustration. This was achieved thanks to the good design of
the experience, using a single button on the touch controls to pick up and drop objects.
In this way and thanks to using standalone HMDs that allow room scale movement, of
the three basic forms of interaction in VR (selection, manipulation and locomotion) the
user only has to focus on object manipulation. Regarding satisfaction, it reached 75%—the
highest score among the categories, indicating that most students had a favorable overall
impression of the educational experience. This is a common outcome in Virtual Reality
experiences, but does not necessarily have to be related to higher learning rates. Finally,
cybersickness was reported at 10%, indicating low discomfort such as dizziness or nausea,
which can detract from learning and overall satisfaction. In terms of strategies to minimize
cybersickness, several measures can be implemented in the design of our VR module.
These include optimizing the pacing of VR content and providing regular breaks during
training to avoid eyestrain and discomfort. In addition, movements within the virtual
environment should be adjusted to be smooth and realistic, reducing abrupt changes that
can cause motion sickness. Consideration should also be given to including customizable
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configuration options so that users can adjust the speed of movement and other parameters
to their individual preferences and tolerance.

The knowledge test was conducted a week following the experience to assess the
persistence of learning outcomes. Immediate post-experience testing may not provide
accurate insights into comprehensive learning, as much of the information might still be
temporarily held in short-term memory [27]. Hence, administering the test after a delay
is strategic for evaluating the enduring impact of the learning experience. The post-test
contains 12 questions: 11 multiple-choice questions and one image-based question to
identify the different components of an electric motor. The test was designed to respond to
a multi-level assessment by focusing on retention (recalling essential information), transfer
(capability of using the learning information to solve new problems and to adapt to new
situations) and understanding. The post-test can be consulted in the Supplementary File. In
the evaluation of Virtual Reality’s (VR) effectiveness in education, particularly in teaching
complex visual and spatial skills such as recognizing and locating components of an
induction motor, the data present nuanced outcomes. Figure 7 shows the relationship
between the final pre-test score and the final post-test score of the participants. While the
overall increase from an average pre-test score of 6.6 to a post-test score of 7.3 suggests
a positive trend, this improvement was not statistically significant. However, a detailed
examination using the Wilcoxon test revealed statistically significant enhancements in
students’ performance on image-based questions, with a p-value of 0.0385, underscoring
VR’s potential in facilitating spatial and visual learning. Moreover, further analysis showed
that when excluding participants who scored above 6 in the pre-test, there was a significant
difference in the scores of the pre-test versus post-test among the remaining students (p =
0.0156). This highlights VR’s particular efficacy in boosting learning outcomes for lower-
performing students, an insight consistent with broader educational literature that suggests
VR can significantly elevate the learning trajectories of students who may struggle with
conventional educational methods.

A B

10

8 PRESENCE 69% 0,66

x

USABILITY 72% 0.67

IMMERSION 65% 0.87

xx

SATISFACTION 75% 0.6

Final Posttest Score

CYBERSICKNESS 10% 0.53

2 Final score Pretest 6.6 25

Final score Post-test 73 1.21

Final Pretest Score

Figure 7. (A) Relationship between final pre-test score and final post-test score. (B) Results of
experience assessment questionnaire and average final pre-test score and final post-test score.

5. Discussion

This paper described the design and development of a Virtual Reality application
based on accurate thermographic data for detecting multiple faults in kinematic chains.
The Virtual Reality (VR) tool presented in this study for diagnosing faults in kinematic
chains represents a significant leap forward in the domain of maintenance engineering
training. Utilizing real thermographic data integrated within a VR environment, this
tool offers an immersive learning platform that mimics real-world scenarios [12], thereby
providing maintenance engineers and technicians with a practical and effective training
experience [9,11]. The VR application enhances the realism of fault detection exercises by
allowing users to interact with detailed simulations of various fault conditions, grounded
in actual industrial data. The thermal images featured in this tool were obtained from ex-
periments conducted on an actual kinematic chain. The development of the VR application
encompassed fourteen distinct electromechanical fault conditions, which include one and
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two broken rotor bars, misalignment between the induction motor and the alternator, mass
unbalance on the output pulley, and five different scenarios of bearing defects in the outer
race (1 mm, 2 mm, 3 mm, 4 mm, and 5 mm), and four gearbox wearing conditions (0%,
25%, 50%, and 75%) along with a healthy condition used for reference.

This innovative approach leverages sophisticated statistical analyses of thermographic
images, enabling users to identify specific fault characteristics and differentiate between
types of faults with a high degree of accuracy. These capabilities are critical in industries
where early fault detection can prevent costly downtime and equipment failures. More-
over, the VR tool incorporates an interactive learning model that has proven particularly
beneficial for lower-performing trainees, helping them achieve significant improvements
in their diagnostic abilities. The immersive nature of the VR environment fosters deeper
engagement and a better understanding of complex concepts, which are often challenging
to grasp through conventional training methods [28].

As shown in the evaluation section, the Virtual Reality (VR) training tool was assessed
with a group of vocational training students specializing in electrical and automatic in-
stallations. The results indicated significant enhancement in the students” performance on
image-based questions assessing their ability to recognize and locate components of an
induction motor. This improvement underscores the VR tool’s effectiveness in facilitating
spatial and visual learning. Furthermore, when excluding participants who scored above a
threshold in the pre-test, a significant difference in the pre-test versus post-test scores was
observed among the remaining students. This highlights the particular effectiveness of VR
training in boosting the learning outcomes of lower-achieving students, in line with studies
showing that VR helps to homogenize group behavior, particularly benefiting students
with less prior learning experience [29]. This is demonstrating its potential as a valuable
educational resource in technical training programs [30]. While the results are promising,
they are limited by the scope of the test group and the specific conditions under which
the training was administered. To fully understand and validate the tool’s efficacy and
generalize the findings, further comparative studies are necessary. Such studies should
involve larger and more diverse participant groups, along with varied educational settings
and fault scenarios. Additionally, comparisons with traditional training methods would
be crucial to quantitatively establish the added value of VR training in terms of learning
outcomes, engagement, and cost-effectiveness. Expanding the evaluation in these ways
would provide a more comprehensive understanding of the VR tool’s potential and its
applicability across different industrial and educational contexts. Future work will seek to
include a more diverse group of participants, as well as to compare the VR training tool
with traditional methods using specific metrics to assess learning outcomes, engagement
and cost-effectiveness, and to study its long-term impact on students’ career paths and
job performance. Research can also be conducted on the integration of augmented reality
and mixed reality technologies, leveraging the capabilities of advanced HMDs such as
Quest 3, to further enhance the immersive experience and improve the effectiveness of
fault detection training.

Supplementary Materials: The following supporting information can be downloaded at: https://www.
mdpi.com/article/10.3390/electronics13132447/s1. The evaluation of this VR training tool has been
experimentally validated with different students and this application is available for download at the
following URL: https:/ /xrailab.es/cases/induction-motors/ (accessed on 13 June 2024).
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