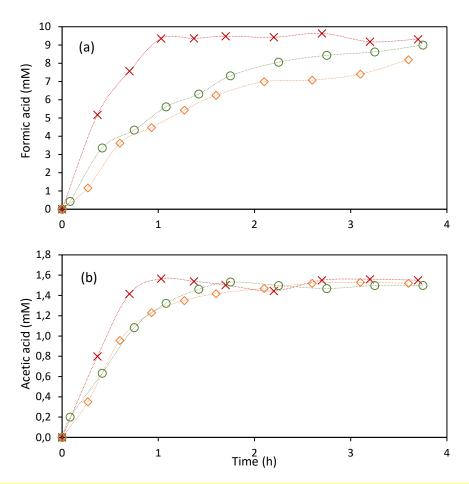
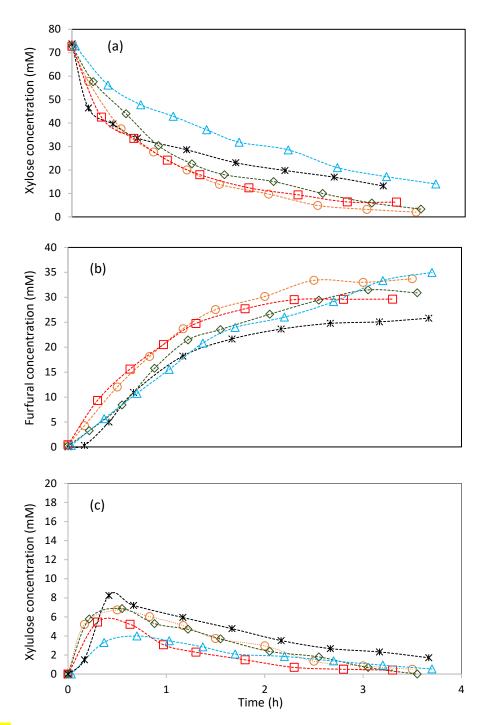
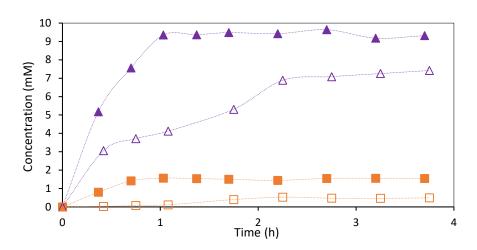
**Table S1.** Slope values calculated by linear regression for initial furfural production and xylose conversion rates for xylose (73 mM) and homogeneous catalysts (2 % w/w xylose) treatments at 180 °C.


| Catalyst                           | Initial furfural production rate (% yield/h) slope | Initial xylose conversion rate<br>(% converted/h) slope |
|------------------------------------|----------------------------------------------------|---------------------------------------------------------|
| CrCl₃                              | 51.9 ± 0.9 <sup>a</sup>                            | 129± 11ª                                                |
| AlCl <sub>3</sub>                  | 33 ± 2 <sup>b</sup>                                | 109 ± 2 <sup>b</sup>                                    |
| FeCl₃                              | 20.8 ± 0.6 <sup>c</sup>                            | 45.2 ± 0.6 <sup>e</sup>                                 |
| $Al_2(SO_4)_3$                     | 29 ± 2 <sup>b</sup>                                | 83 ± 1 <sup>d</sup>                                     |
| KAI(SO <sub>4</sub> ) <sub>2</sub> | 29.2 ± 0.7 <sup>b</sup>                            | 93.6 ± 0.5°                                             |

Different superscript letters indicate significant statistical difference among slopes in the same column (p value  $\leq$  0.05).


**Table S2.** Slope values calculated by linear regression for initial furfural production and xylose conversion rates for xylose (73 mM) and heterogeneous catalysts (2 % w/w xylose) treatments at 180 °C.

| Catalyst            | Initial furfural production<br>rate (% yield/h) <mark>slope</mark> | Initial xylose conversion rate<br>(% converted/h) slope |
|---------------------|--------------------------------------------------------------------|---------------------------------------------------------|
| Montmorillonite K10 | 38 ± 2°                                                            | 88.9 ± 0.2 <sup>b</sup>                                 |
| Ferrierite ammonium | $31.9 \pm 0.6^{b}$                                                 | 101 ± 3°                                                |
| Zeolite Hβ          | $23.6 \pm 0.9^{\circ}$                                             | 56.4 ± 0.7°                                             |
| Nafion NR50         | 20.2 ± 0.5 <sup>d</sup>                                            | 56.2 ± 0.4 <sup>c</sup>                                 |


Different superscript letters indicate significant statistical difference among slopes in the same column (p value  $\leq$  0.05).



**Figure S1.** (a) Formic and (b) acetic acid concentration (mM) during subW-CO2 experiences using xylose (73 mM) at 180 °C and 5.5 MPa with no catalyst (\*) and the homogeneous catalysts: CrCl₃ (0.83 mM) (x), AlCl₃ (0.91 mM) (○) and FeCl₃ (0.81 mM) (◇). Lines are a guide to the eye.



**Figure S2.** (a) Xylose, (b) furfural and (c) xylulose concentration (mM) during subW-CO<sub>2</sub> experiences using xylose at 180 °C and  $\frac{5.5 \text{ MPa}}{5.5 \text{ MPa}}$  with no catalyst (\*), and the heterogeneous catalysts: Ferrierite ammonium ( $\bigcirc$ ), Montmorillonite K10 ( $\square$ ), Zeolite H $\beta$  ( $\diamondsuit$ ), *Nafion NR50* ( $\triangle$ ). Lines are represented as a guide to the eye.



**Figure S3.** Concentration (mM) of acetic acid ( $\blacksquare$ ,  $\square$ ) and formic acid ( $\blacktriangle$ ,  $\triangle$ ) during subW experiences using xylose (73 mM) at 180 °C and 5.5 MPa for CrCl<sub>3</sub> (0.83 mM) (solid) and 1<sup>st</sup> run *Nafion NR50* (empty). Lines are represented as a guide to the eye.