Study of the synergistic effect of a green pressurized reaction media (subW-CO₂) with homogeneous and heterogeneous catalysts for furfural production from sugar-derived biomass

Alba E. Illera

H. Candela, A. Bermejo-López, P. Barea, Ó. Benito-Román, R. Melgosa, S. Beltrán, M.T. Sanz

Furfural

Furfural from xylose

Xylose

Main pentose in hemicellulose Functional isomer: xylulose Furfural produced from their dehydration

To increase furfural production:

- Catalysts
- Organic solvents

Furfural from xylose

Xylose

Isomerization

subW-CO₂ for furfural production

Subcritical water (subW)

^[1] http://www1.lsbu.ac.uk/water/water_phase_diagram.html[2] https://www.coreseparations.com/what-is-subcritical-water/

Subcritical water (subW)

[1] http://www1.lsbu.ac.uk/water/water_phase_diagram.html[2] https://www.coreseparations.com/what-is-subcritical-water/

Subcritical water (subW)

Water ionic product $(mol/L)^2$: $K_w = [H^+][OH^-]$ 25 °C \rightarrow 1 x 10⁻¹⁴ 200 °C (10 bar) \rightarrow 1 x 10⁻⁹

Subcritical water (subW)

Temperature (°C)

Subcritical water (subW)

Water ionic product $(mol/L)^2$: $K_w = [H^+][OH^-]$ 25 °C \rightarrow 1 x 10⁻¹⁴ 200 °C (10 bar) \rightarrow 1 x 10⁻⁹ Water dielectric constant: 25 °C \rightarrow 78.4 200 °C (10 bar) \rightarrow 35

Subcritical water (subW)

subW-CO₂ for furfural production

Subcritical water (subW) + CO₂

- K
- Pressurizing agent for subW
- Solvent-free biphasic system
- Only water and carbon dioxide
- CO₂ acting as a Brønsted acid

 $CO_2(aq) + H_2O \rightleftharpoons H_2CO_3(aq)$

subW-CO₂ for furfural production

subW-CO₂ with no catalyst added

subW-CO₂ with no catalyst added

subW-CO₂ with no catalyst added

subW-CO₂ + Nafion NR50

Nafion NR50 was selected as the best catalyst of this group

Selectivity/degradation products

Selectivity/degradation products

subW-CO₂ and corn stover

Corn stover: leaves, stems and corn cobs

	Composition (%)	Corn stover
	Extractives	8.7 ± 0.6
Hemicellulose	Xylans	25 ± 3
	Arabinans	4.1 ± 0.5
	Acetyl	4.2 ± 0.2
Cellulose	Glucans	41.4 ± 4
Lignin	Soluble	1.7 ± 0.5
	Insoluble	18 ± 3
	Ash	2.7 ± 0.4
	Protein	3.2 ± 0.2

subW-CO₂ and corn stover

Corn stover: leaves, stems and corn cobs

	Composition (%)	Corn stover
	Extractives	8.7 ± 0.6
Hemicellulose	Xylans	25 ± 3
	Arabinans	4.1 ± 0.5
	Acetyl	4.2 ± 0.2
Cellulose	Glucans	41.4 ± 4
Lignin	Soluble	1.7 ± 0.5
	Insoluble	18 ± 3
	Ash	2.7 ± 0.4
	Protein	3.2 ± 0.2

Conclusions

subW showed catalytic effect for furfural production from xylose

subW-CO₂ improved furfural yield due to its Brønsted acid effect

subW-CO₂ + homogeneous and heterogeneous catalysts further improved furfural yield

CrCl₃ was the fastest catalyst, while Nafion resin was the most selective towards furfural

Nafion resin could be reused at least 10 times without losing effectivity with xylose

CrCl₃ and **Nafion resin** produced > 30 % furfural yield from corn stover

subW-CO₂ is a promising solvent-free biphasic system, greener than traditional ones

THANK YOU!

Study of the synergistic effect of a green pressurized reaction media (subW-CO₂) with homogeneous and heterogeneous catalysts for furfural production from sugar-derived biomass

Alba E. Illera

H. Candela, A. Bermejo-López, P. Barea, Ó. Benito-Román, R. Melgosa, S. Beltrán, M.T. Sanz

