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Abstract—Signal source localization and separation are key 

tasks for many applications. In this paper, a new deterministic 

method is proposed for estimating the 3D location and separating 

multiple acoustic or vibration sources, simultaneously active. The 

method is based on TDOA measurements obtained via cross-

correlation. Then, with the information from the estimated 

locations, source separation is achieved. The performance of the 

method was evaluated, only through simulations, in terms of 

accuracy and computational load. The obtained results, with 

SNR=6dB, showed estimation errors for the localization method 

always bounded below 10 centimeters, obtaining the best results 

with a lower number of sources and a higher number of 

receivers. Furthermore, the computational load was substantially 

reduced as compared to exhaustive search, being the gain more 

noticeable for a higher number of sources. The corresponding 

error for the separation of the original source signals was 

bounded below 25%, for 2 sources and 6 receivers. Thus, there 

are strong evidences that the here-proposed method is accurate 

and robust enough, while being efficient in computational terms, 

so many applications can benefit from its use. 

Keywords—acoustics; blind source localization and separation; 

independent sources; single-path; Time Difference of Arrival 

(TDOA); vibration. 

I. INTRODUCTION 

Source localization and separation of vibration and acoustic 
signals is widely recognized as a key task in many fields and 
applications [1-3]. One of those fields is predictive 
maintenance of agro-industrial equipment [4]. Being able to 
locate the source where vibrations are generated, altogether 
with source signal separation, can lead, in these cases, to more 
accurate fault identification and its prompt correction without 
needing further detailed inspections. Several methods have 
been deployed so far, using vibrations to identify the status of 
machinery components, but these methods still require quite a 
lot of prior knowledge and training in order to work accurately 
[5, 6]. Thus, source localization and separation techniques can 
be highly beneficial for this field, since they could limit, and 
even avoid, the need of a training stage, for each particular 
machine, before being able to operate. In this way, a higher 
independence is achieved and the techniques could readily 
work for any machine without needing further adjustments. 

So far, many previous studies have tackled single source 
localization [1-3]. However, little progress has been made for 
locating multiple sources that are active at the same time [7]. In 
this paper, a new method for 3D location estimation and later 
separation of multiple vibration or acoustic sources is proposed 
(Section II). In addition to the proposal, its accuracy, 

robustness and computational load are assessed through 
simulations (Section III). To wrap up, some final remarks, 
conclusions and future lines are provided (Section IV). 

II. PROPOSED METHOD 

This section deals with the explanation of the proposed 
method for source location estimation and source separation. 

A. Simplified Model: Assumptions 

The underlying assumptions of the model, employed for 
signal generation and propagation, are that: 

i. all the sources generate independent signals; 
ii. there are no reflections, i.e. no multipath propagation; 

iii. propagation is isotropic and at a known constant speed; 
iv. the received signals are a superposition of the delayed-

attenuated signals coming from each source; 
v. additive Gaussian noise is added to each received signal. 

B. Overview of the Simplified Model 

Considering those assumptions, the employed model for the 
propagation of signals between sources and each receiver is 
exposed in this subsection. The scenario for the source 
localization and separation problem is illustrated in Fig. 1. 

Assuming that there are   sources and   receivers (Fig. 1), 
let’s denote each source signal as   , with      , and each 
received signal as   , with      . In this case, the received 

signals are, for all   such that      , as shown in (1). 
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where    
 or    

 denote the spatial location of each source 

or receiver, respectively,   is the propagation speed of the 
signal, and    is the additive noise, superposed at each receiver, 

following a Gaussian distribution, i.e.            . 

Considering this model, the proposed method has three 
steps: (i) the calculation of the TDOA from all pairs of received 
signals; (ii) the calculation of the best location for each source 
based on the TDOA values computed in the previous step; and 
(iii) the solving of the source separation problem, considering 
as true locations the previously estimated ones. 

C. Time Difference of Arrival (TDOA) Calculations 

Based on all received signals   , with      , the cross-

correlation between all possible pairs is computed as in (2). 
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Fig. 1. Illustration of the 2D source localization and separation problem. 

where the   operator denotes the cross-correlation function 
between    and   . 

The   highest peaks in         are employed to estimate the 

TDOA for each source. From these TDOA, the equivalent 
distance difference can be calculated by multiplying the TDOA 
by  , the known propagation speed of the waves in the 
medium. Therefore, let’s denote by        the distance 

difference, corresponding to the  th peak, between receivers   
and  . Negative        distances mean that the distance from the 

source to the  th receiver is smaller than that to the  th receiver 
and vice versa. It is worth noticing here that, since one cannot 
distinguish which source the peak belongs to, exhaustive 
exploration should be used in the later steps to properly 
identify which source each particular peak belongs to. This 
uncertainty increases the required number of receivers in order 
to get a unique closed solution for the localization problem. 

D. Sources Location Estimation 

Assuming that the location for all the receivers (   
) is 

accurately known, one can try to solve the best locations for the 
unknown positions of the sources (   

). The estimation of the 

best location for all present sources is accomplished by 
searching for those locations that best fit, in a nonlinear least-
squares sense, the system of nonlinear equations in (3). 
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The solutions for the system in (3) are the locations of all 
the sources, i.e.  ̂       [     ]. This solution can be 

straightforwardly found by using any of the widespread 
nonlinear techniques for solving it in a nonlinear least-squares 
sense, e.g. by employing the Levenberg–Marquardt algorithm. 

1) Computational Load Reduction 
Since there is no available way to distinguish the 

correspondence between the computed        to each source, all 

possible permutations in   for the   values should be explored, 
a priori. However, it is worth noticing that not all the equations 

available in (3),   ( 
 
), are required to completely determine 

a unique solution. These extra equations could, and should, be 
used for improving the robustness against noise. 

So as to avoid the extra computing requirements the search 
for all permutations would lead to, the smallest subset of 
equations big enough to avoid uncertainties should be used. 
The remaining equations should be incorporated later, one by 
one, using the permutation of   estimated       , for this pair of 

receivers, that best fits the problem solved before. 

Alternatively, even a fewer number of equations, less than 
the minimum required to fully determine a unique solution, can 
be used in the first step. In cases of ambiguity, if significant 
inconsistencies are detected later on, while adding the rest of 
the equations, other ordering can be used as initial hypothesis 
until the overall inconsistencies are minimized. By using this 

approach an even higher computational efficiency is reached, 
being more noticeable as the number of sources increases. 

E. Source Separation 

Once the locations have been estimated, and assuming the 
process was accurate enough, the original signals from each 
source can be recovered. The system of equations for the 
source signals, in the frequency domain, is as shown in (4). 
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where  ̂    ‖ ̂  
    

‖ and, thus, the only unknowns are 

the   source signals, i.e.       for all      . The system 
is fully determined whenever there are at least   equations, i.e. 
if    . If extra equations are at hand, they are used to 
minimize the effects of the noise, by solving the system using 
the least-squares approach. Note that, in the transformation 
made from (1) into (4), the additive noise term was removed. 
Other more complete approaches can include the noise term in 
this stage and, thus, obtain a more statistically optimal estimate 
by characterizing the noise model and its parameters, instead of 
simply using a least-squares approach. 

III. EVALUATION THROUGH SIMULATIONS 

In order to assess the performance of the proposed method, 
two kinds of evaluations were performed: (i) for the source 
localization problem, execution times and accuracy comparison 
as a function of the number of sources and receivers; and (ii) 
for the source separation problem, similarity of the estimated 
signals against the original ones. Each of these evaluations is 
explained in the subsequent subsections. In both cases, sources 
and receivers were randomly distributed along a 60m-side 
cube. All generated source signals were random, as well, with a 
unitary RMS value. Twenty repetitions were considered, for 
each case, so as to reduce the bias of the experiments and mean 
values are reported in this paper for the obtained results. 

A. Execution Times and Accuracy for Source Localization 

The source localization method was evaluated by executing 
it within the MATLAB

®
 R2015a programming environment on 

a Lenovo B560 laptop. The comparison, in terms of execution 
time (Table I) and accuracy (Table II), was made using a 
different number of sources and receivers. Great computational 
savings, reaching 99.99% for a high number of receivers, were 
obtained by avoiding brute-force exploration (Table I). The 
accuracy of the method was always bounded below 0.1 meters, 
as shown in Table II, with all standard deviations bounded 
below 0.03 meters. A sample graphical solution for 3 sources 
and 6 receivers is depicted in Fig. 2. 

TABLE I. EXECUTION TIMES FOR THE METHOD (IN MINUTES) VARYING THE 

NUMBER OF SOURCES AND RECEIVERS (NEEDED TIME USING LOAD 

REDUCTION APPROACH / ESTIMATED TIME USING BRUTE-FORCE). 

  Number of receivers 

  4 5 6 7 8 

N
u

m
b

er
 o

f 

so
u

r
ce

s 

1 

~3·10-4 / 
~3·10-4 

~3·10-4 / 
~3·10-4 

~3·10-4 / 
~3·10-4 

~3·10-4 / 
~3·10-4 

~3·10-4 / 
~3·10-4 

2 
~0.09 / 

~0.09 

~0.09 / 

~2.9 

~0.10 / 

~92.2 

~0.11 / 

~6·103 

~0.12 / 

~7·105 

3 
~48.84 / 

~48.84 

~48.92 / 

~6·104 

~49.07 / 

~5·108 

~49.53 / 

~2·1013 

~50.78 / 

~6·1018 



TABLE II. MAXIMUM LOCATION ERROR (IN METERS) WITH SNR=6DB. 

  Number of receivers 

  4 5 6 7 8 

N
u

m
b

er
 

o
f 

so
u

r
ce

s 1 0.019 0.015 0.012 0.010 0.008 

2 0.029 0.019 0.014 0.013 0.012 

3 0.062 0.053 0.035 0.021 0.018 

B. Similarity for Source Separation 

For the case when     sources and     receivers, 
with an SNR of 6dB, the similarity between the estimated, 
  ̂   , and real,      , source signals was calculated using (5). 
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Considering this, the average similarity obtained for the 20 
trials was 0.2268±0.0453, i.e. always below 25% since source 
signals had a unitary RMS value. Notice that in (5), the greater 
the similarity among signals, the lower the value of       ̂. 

Sample original and estimated signals are depicted in Fig. 3. 

IV. CONCLUSIONS 

The results obtained in this preliminary study show the 
potential of the proposed method to accurately estimate the 
location and also to achieve the subsequent source separation. 
There are strong evidences that it is accurate and robust enough 
to noise interferences. Moreover, it is efficient in 
computational terms, since no exhaustive exploration of all the 
combinations is needed to estimate the best location. 

From Table I, it can be seen that the computational load 
drastically increases as the number of sources grows, while 
slowly increasing as the number of receivers is incremented. 
From Table II, it can be observed that the accuracy of the 
method remains high enough irrespectively of the number of 
sources and receivers. Nevertheless, a higher immunity against 
noise is achieved as the number of receivers is increased. The 
location estimation also becomes a little bit less accurate when 
the number of sources is increased, as expected. From Fig. 3, it 
can be seen that a high accuracy for source separation is also 
achieved even with a relatively low SNR of 6dB. 

Nevertheless, an important drawback is that the method still 
requires the number of active sources as prior knowledge to 
operate in a proper way. But this issue could be easily 
overcome by applying a threshold in cross-correlation to 
estimate the actual number of sources. The method also 
imposes certain assumptions that might not be valid in real 
environments, such as no reflections and the isotropic 
propagation. Therefore, future work should still tackle the 
 

 
Fig. 2. Sample solution for the 3D source localization problem: 3 sources (real 

and estimated positions marked with red circles and black crosses, 
respectively) and 6 receivers (real positions marked with blue crosses). 

 
Fig. 3. One separated signal (blue) and the corresponding original one (red), 

for SNR=6 dB, M=6 receivers, and N=2 sources. 

extension of this method to other more realistic propagation 
models, e.g. with reflections and multi-path propagation. The 
evaluation of the method through experimental tests, apart 
from simulations, should be tackled as well, including the 
study of the influence of the SNR and the effects of having 
spread sources instead of idealized point sources. Moreover, it 
should also be investigated the mathematical determination of 
the minimum subset of equations that completely determines 
the solution of the problem posed in Section II.D, as a function 
depending on the number of sources and receivers. 

To wrap up, it is worth highlighting that the proposed 
method could be extended to other more complex geometries 
where no direct line of sight propagation exists, also having 
extra caution with several propagation paths causing echoes, 
such as in the case of typical machinery chassis. The authors 
are currently working on this last line and its validation with an 
agricultural harvester. 
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