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We investigate which spaces are obtained when considering the limiting class of 
real interpolation spaces (0, q; J) for ordered Banach couples of spaces of (scalar) 
integrable functions with respect to a vector measure m, defined on a σ-algebra, 
with values in a Banach space. If m is in particular a finite positive scalar 
measure, previous known results are derived from ours. Furthermore, we study the 
interpolation of p-th power factorable operators by the extreme real interpolation 
method (1, q; K). We also deduce interpolation results for the (1, q; K)-method that 
apply to other related classes of operators to p-th power factorable operators, such 
as bidual (p, q)-power-concave operators and q-concave operators.

© 2024 The Author(s). Published by Elsevier Inc. This is an open access article 
under the CC BY-NC license (http://creativecommons .org /licenses /by -nc /4 .0/).

1. Introduction

Among all interpolation methods, the real method (A0, A1)θ,q, 0 < θ < 1 and 1 ≤ q ≤ ∞, has been the 
most studied. A reason for this is, probably, its flexible construction. Thus, there exist different equivalent 
definitions of this method, being specially prominent those ones using the K- and J-functionals of Peetre 
(see [3], [4], [5] and [45]).

Moreover, the definition of the real method (A0, A1)θ,q has been generalized in several directions. For 
instance, an extension of (A0, A1)θ,q consists in replacing in its construction the function tθ by a more general 
function f(t) (see [38], [39] and [44]). To illustrate an advantage of the real method with a function parameter
(A0, A1)f,q we will mention that working with a couple of Lebesgue spaces one obtains a larger class of spaces 
than Lebesgue and Lorentz spaces provided by the real method (A0, A1)θ,q. In fact, if (Ω, Σ, μ) is a positive 
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σ-finite measure space, applying the real method with a function parameter to the couple (L∞, L1) it holds 
that 

(
L∞, L1)

f,q
= Lp,q(logL)α, when f(t) = t

1
p (1 + | log t|)−α, 1 < p < ∞, 1 ≤ q ≤ ∞ and α ∈ R.

Some authors have investigated (see [38], [31] and [32]) the logarithmic interpolation spaces (A0, A1)θ,q,A
that correspond to the special case where f(t) = tθ�A(t), being �A(t) a broken logarithmic function, that is, 
A = (α0, α∞) ∈ R2, �(t) = 1 + | log t| and

�A(t) :=
{

�α0(t), if 0 < t ≤ 1,
�α∞(t), if 1 < t < ∞.

In the construction of (A0, A1)θ,q,A it is possible to consider 1 ≤ q ≤ ∞ and not only 0 < θ < 1, but θ even 
taking the values 0 and 1. For these limiting values θ = 0 and θ = 1, the extra function �A(t) is essential to 
get a meaningful definition of (A0, A1)θ,q,A.

However, when (A0, A1) is an ordered Banach couple, that is when A0 ⊆ A1 (where “⊆” means continuous 
inclusion), then just making a natural modification in the definition of the real method (A0, A1)θ,q, it is 
possible to define two limiting classes of real interpolation spaces, (A0, A1)1,q;K and (A0, A1)0,q;J , without 
involving any auxiliary function (see Section 2 for precise definitions).

The spaces (A0, A1)1,q;K were investigated for the first time by Gomez and Milman [37]. More recently, 
the extreme interpolation methods (A0, A1)1,q;K and (A0, A1)0,q;J have been studied by Cobos, Fernández-
Cabrera, Kühn and Ullrich [11], Cobos, Fernández-Cabrera and Mastyło [12], Cobos and Kühn [6] and 
Cobos, Fernández-Cabrera and Martínez [13] (see also [10], [14], [15], [7], [8] and [9]). It is important to 
point out that (A0, A1)0,1;J = A0 and for the rest of the values 1 < q ≤ ∞, the space (A0, A1)0,q;J is very 
close to A0. On the other hand, (A0, A1)1,∞;K = A1 and for other values 1 ≤ q < ∞ the space (A0, A1)1,q;K
is very near A1. These facts constitute an important difference in the theory.

As an intrinsic problem related to interpolation theory it has been constantly investigated the description 
of the spaces obtained by applying an interpolation method to concrete compatible couples of spaces. In 
the recent years, this question has awakened a lot of attention when the couple is formed by spaces of 
(scalar) integrable functions associated to vector measures (see, for instance, [34], [22] and [24] for the 
complex interpolation method; [35] and [25] for the real method; [27], [28] and [42] for the real method with 
a function parameter; and [21], [26], [29] and [30], among others, for related questions). This interest can 
be better understood by some applications that such spaces have.

Thus, it is worthy to mention that the space L1(m), of scalar integrable functions with respect to a vector 
measure m, defines a broad class of Banach function spaces. More precisely, every order continuous Banach 
lattice X with a weak order unit can be represented (order isometrically) as an L1(m) space of a vector 
measure m defined on a σ-algebra, as proved by Curbera [16, Theorem 8]. If the order continuity fails 
but X has a Fatou type property and a weak order unit belonging to its order continuous part, then X
can be identified (order isometrically) with a space L1

w(m) of weakly integrable functions with respect to 
a vector measure m on a σ-algebra (see [18, Theorem 2.5]). For a p-convex Banach lattice X, analogous 
representations as an Lp(m) or an Lp

w(m) space hold, depending on similar assumptions considered above 
(see [33] and [19]).

Another significant application of integrable function spaces with respect to a vector measure refers to 
the so-called optimal domain of an operator T acting from a Banach function space X into a Banach space 
E. Namely, if X is an order continuous Banach function space over a finite measure space (Ω, Σ, μ) and T
satisfies a natural condition which makes mT be a vector measure (mT is associated to T by mT (A) :=
T (χA), where χA is the characteristic function of A ∈ Σ), the space L1(mT ) is the optimal domain for T
within the class of order continuous Banach function spaces, that is, L1(mT ) is the largest space (in that 
class of spaces) to which T can be extended as a continuous operator, still with values in E (see [17] or [43, 
Theorem 4.14]).
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The space Lp(mT ) has also an important optimality property when T is a p-th power factorable operator
from X into E (see [43, Chapter 5]), in the sense that Lp(mT ) is maximal among all order continuous 
Banach function spaces Y that continuously contain X and such that T has an E-valued extension from Y
into E which is itself p-th power factorable (see [43, Theorem 5.11]).

The class of p-th power factorable operators coincides with the class of operators that can be extended 
to the p-th power space X[p] of the Banach function space X where the operator acts. These operators 
have turned out to be useful for analyzing some factorization properties of operators between Banach 
function spaces (see [43, Chapter 6] and [36]). In addition, relevant operators coming from Fourier analysis 
as convolution operators and the Fourier transform become p-th power factorable in certain cases (see [43, 
Section 7.5]).

As far as we know, none description has been given in the literature regarding the spaces obtained 
when applying limiting interpolation methods to Banach couples formed by function spaces associated 
to a vector measure. Nothing is known either about interpolation of p-th power factorable operators by 
limiting methods. In this paper we start the research on these questions. Namely, after this introduction 
and some necessary preliminaries (Section 2), we establish results for the (0, q; J)-method in the case of the 
first question (Section 3), and theorems that apply to the (1, q; K)-method in relation to the second issue 
(Section 4).

2. Notation and basic definitions

Throughout the paper all functions will be R-valued and all Banach spaces will be over R. If X and Y
are Banach spaces, we will put X = Y whenever X and Y are equal in the algebraic and topological sense 
(their norms are equivalent). By X ⊆ Y we will mean that X is continuously embedded into Y . As usual, 
given two quantities ν, τ depending on certain parameters, we will write ν � τ if there exists a constant 
c > 0 independent of appropriate parameters such that ν ≤ cτ . When ν � τ and also τ � ν, we will put 
ν � τ .

We will consider ordered Banach couples, that is to say couples Ā = (A0, A1) such that A0, A1 are 
Banach spaces with A0 ⊆ A1. We recall that, for each t > 0, Peetre’s K- and J-functionals are defined by

K(t, a) = K(t, a;A0, A1) := inf{‖a0‖A0 + t‖a1‖A1 : a = a0 + a1, aj ∈ Aj}, a ∈ A1,

and

J(t, a) = J(t, a;A0, A1) := max{‖a‖A0 , t‖a‖A1}, a ∈ A0.

The space Ā0,q;J = (A0, A1)0,q;J , 1 ≤ q ≤ ∞, is formed (see [11, Definition 3.1]) by all the elements 
a ∈ A1 for which there exists a strongly measurable function u(t) with values in A0 such that a =

∫ ∞
1 u(t)dtt

(convergence in A1) and

⎛⎝ ∞∫
1

J(t, u(t))q dt

t

⎞⎠
1
q

< ∞
(

sup
t>1

{J(t, u(t))} < ∞, if q = ∞
)
.

We set ‖a‖Ā0,q;J
as the infimum of the last quantity over all possible representations u(t) of a satisfying the 

above conditions.
Note that (A0, A1)0,q;J is an intermediate Banach space with respect to (A0, A1) for any 1 ≤ q ≤

∞ and (A0, A1)0,1,J = A0 (see [11, Lemma 3.2]). Furthermore, (A0, A1)0,q;J coincides (with the usual 
modification if q = ∞) with the collection of all those a ∈ A1 such that a =

∑∞
n=1 un (convergence in 

A1), with (un) ⊂ A0 and (
∑∞

J(2n, un)q)
1
q < ∞, being the norm ‖a‖Ā equivalent to ‖a‖0,q :=
n=1 0,q;J
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inf
{(∑∞

n=1 J(2n, un)q
) 1

q : a =
∑∞

n=1 un

}
. As a straightforward consequence, (0, q; J)-spaces are ordered in 

the sense that (A0, A1)0,p;J ⊆ (A0, A1)0,q;J if p ≤ q.
We also recall that the space Ā1,q;K = (A0, A1)1,q;K , 1 ≤ q ≤ ∞, consists of those a ∈ A1 which have a 

finite norm

‖a‖1,q;K :=

⎛⎝ ∞∫
1

[
K(t, a)

t

]q
dt

t

⎞⎠
1
q (

‖a‖1,q;K := sup
t>1

{
K(t, a)

t

}
, if q = ∞

)
.

The space (A0, A1)1,q;K is an intermediate Banach space with respect to (A0, A1) for every 1 ≤ q ≤ ∞
and (A0, A1)1,∞,K = A1 (see [37] and [11, Section 7]). Furthermore, (A0, A1)1,q;K coincides (with the usual 
modification if q = ∞) with the set of elements a ∈ A1 such that ‖a‖1,q :=

(∑∞
n=1 [2−nK(2n, a)]q

) 1
q is finite. 

In addition, the norm ‖a‖1,q;K is equivalent to ‖a‖1,q. Hence, it follows that (1, q; K)-spaces are increasing 
with q, that is, (A0, A1)1,p;K ⊆ (A0, A1)1,q;K if p ≤ q.

It is worth mentioning that (0, q; J)-spaces have an equivalent description by using the K-functional, as 
it is shown in [11, Theorem 4.2]. Namely, it holds by [11, Theorem 4.2] that

(A0, A1)0,q;J = (A0, A1)log,q;K , 1 < q ≤ ∞, (1)

where (see [11, Definition 4.1]) the space Ālog,q;K = (A0, A1)log,q;K , 1 < q ≤ ∞, consists of all elements 
a ∈ A1 for which the following norm is finite

‖a‖log,q;K :=

⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩

⎛⎝ ∞∫
1

[
K(t, a)
1 + log t

]q
dt

t

⎞⎠
1
q

, 1 < q < ∞,

sup
t>1

{
K(t, a)
1 + log t

}
, q = ∞.

Analogously, the space (A0, A1)1,q;K can be described by means of the J-functional (see [11, Theorem 
7.6]).

In what follows, by a Banach function space X on a given finite measure space (Ω, Σ, μ), or on μ for 
short, we mean that X is a lattice ideal of the space of (equivalence classes of) measurable functions L0(μ), 
endowed with a complete norm ‖ · ‖X that is compatible with the μ-a.e. order and such that L∞(μ) ⊆ X. A 
Banach function space X is said to be order continuous if for every sequence (fn) in X such that 0 ≤ fn ↓ 0
pointwise, it holds that ‖fn‖X ↓ 0.

Next we will recall some basic definitions and results on integration with respect to vector measures. Let 
E be a Banach space and m : Σ → E be a countably additive vector measure, where Σ is a σ-algebra of 
subsets of some nonempty set Ω. Let E∗ denote the dual space of E. The semivariation of m is the set 
function ‖m‖ : Σ −→ [0, ∞) defined by

‖m‖(A) := sup{|〈m,x∗〉|(A) : ‖x∗‖E∗ ≤ 1}, A ∈ Σ,

where |〈m, x∗〉| is the total variation measure of the scalar measure 〈m, x∗〉, given by 〈m, x∗〉(A) :=
〈m(A), x∗〉 for A ∈ Σ. It is well-known that

1
2‖m‖(A) ≤ sup {‖m(B)‖E : B ⊆ A,B ∈ Σ} ≤ ‖m‖(A),

for every set A ∈ Σ. For the particular case when m is a finite positive scalar measure, the semivariation 
‖m‖ and the measure m coincide.
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A set A ∈ Σ is called m-null if ‖m‖(A) = 0. A Rybakov (control) measure for m is a measure defined as 
|〈m, x∗〉| for some x∗ ∈ E∗, satisfying that |〈m, x∗〉|(A) = 0 if and only if A is a m-null set. Such a measure 
always exists (see for example [43, p. 108]).

Let L0(m) denote the space of all measurable functions f : Ω −→ R. Two functions f, g ∈ L0(m) will 
be identified if are equal m-a.e., that is, if {w ∈ Ω : f(w) 
= g(w)} is an m-null set. We also recall that 
f ∈ L0(m) is said to be weakly integrable (with respect to m) if f ∈ L1(|〈m, x∗〉|) for all x∗ ∈ E∗. The space 
L1
w(m) of all (m-a.e. equivalence classes of) weakly integrable functions is a Banach function space on every 

Rybakov (control) measure for m, when endowed with the norm

‖f‖L1
w(m) := sup

⎧⎨⎩
∫
Ω

|f | d|〈m,x∗〉| : ‖x∗‖E∗ ≤ 1

⎫⎬⎭ .

A weakly integrable function f is said to be integrable (with respect to m) if for every A ∈ Σ there exists an 
element of E denoted by 

∫
A
fdm (called integral of f over A) such that 

〈∫
A
fdm, x∗〉 =

∫
A
fd〈m, x∗〉 for all 

x∗ ∈ E∗. The space L1(m) of all (m-a.e. equivalence classes of) integrable functions is an order continuous 
closed ideal of L1

w(m), and in general L1(m) � L1
w(m).

If 1 < p < ∞, a function f ∈ L0(m) is said to be weakly p-integrable (with respect to m) if |f |p ∈ L1
w(m), 

and p-integrable (with respect to m) if |f |p ∈ L1(m). We will denote by Lp
w(m) the space of (m-a.e. 

equivalence classes of) weakly p-integrable functions and by Lp(m) the space of (m-a.e. equivalence classes 
of) p-integrable functions. Obviously we have that Lp(m) ⊆ Lp

w(m). The natural norm for both spaces is 
given by

‖f‖Lp
w(m) := sup

⎧⎪⎨⎪⎩
⎛⎝∫

Ω

|f |p d|〈m,x∗〉|

⎞⎠
1
p

: ‖x∗‖E∗ ≤ 1

⎫⎪⎬⎪⎭ , f ∈ Lp
w(m).

We remark that, when m is a finite positive scalar measure, both spaces Lp
w(m) and Lp(m) coincide with 

the classical (scalar) Lebesgue space Lp.
In addition, let L∞(m) be the Banach space of all (m-a.e. equivalence classes of) essentially bounded 

functions equipped with the supremum norm. It holds that L∞(m) ⊆ Lp(m), for any 1 ≤ p < ∞. We 
refer to the paper [33] and the monograph [43] for much more additional information on spaces Lp(m) and 
Lp
w(m).
Finally, we recall the definition of the Lorentz-Zygmund space with respect to a vector measure m. For 

1 ≤ p, q ≤ ∞ and α ∈ R, the space Lp,q(logL)α(‖m‖) is defined as those functions f ∈ L0(m) for which the 
quantity

‖f‖Lp,q(logL)α(‖m‖) :=

⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩

⎛⎝ ∞∫
0

[
t

1
p (1 + | log t|)αf∗(t)

]q dt

t

⎞⎠
1
q

, 1 ≤ q < ∞,

sup
t>0

{
t

1
p (1 + | log t|)αf∗(t)

}
, q = ∞,

is finite. Here f∗ stands for the decreasing rearrangement of f with respect to the vector measure m, given 
by f∗(t) := inf{s > 0 : ‖m‖f (s) ≤ t}, for t > 0, where ‖m‖f (s) := ‖m‖({w ∈ Ω : |f(w)| > s}). Note that 
the function f∗ is non-increasing, right-continuous, and also f∗(t) = 0 for any t ≥ ‖m‖(Ω).

If α = 0, the space Lp,q(logL)α(‖m‖) coincides with the space Lp,q(‖m‖), introduced in [35]. For p = q, 
the space Lp,p(‖m‖) is simply denoted by Lp(‖m‖). As it has been pointed out in [35], in general, the spaces 
Lp(‖m‖) and Lp(m) do not coincide. However, for every 1 ≤ p < ∞, all the following continuous inclusion 
hold (see [35, Proposition 7])
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L∞(m) ⊆ Lp,1(‖m‖) ⊆ Lp(‖m‖) ⊆ Lp(m) ⊆ Lp
w(m) ⊆ Lp,∞(‖m‖).

3. Interpolation of integrable function spaces with respect to vector measures by limiting 
(0, q; J)-methods

We begin by remembering two estimates for the K-functional that we will use in this section. In the next 
proposition inequality (2) (respectively, inequality (3)) is a consequence of [35, Proposition 8 and Remark 
9] (respectively, [35, Proposition 10 and Lemma 3]) and [3, Chapter 5, Proposition 1.2].

Proposition 3.1. If f ∈ L1
w(m), then

f∗(t) � K
(
t−1, f ;L∞(m), L1

w(m)
)
. (2)

On the other hand, if f ∈ L1(m), then

K
(
t, f ;L∞(m), L1(m)

)
� t

t−1∫
0

f∗(s)ds. (3)

Our first theorem shows that when interpolating the couples 
(
L∞(m), L1(m)

)
and 

(
L∞(m), L1

w(m)
)

by 
the (0, q; J)-method, we obtain the Lorentz-Zygmund space L∞,q(logL)−1(‖m‖). The proof uses some ideas 
of [27, Theorem 3] and also equality (1) and Proposition 3.1. Theorem 3.2 provides a version of [11, Corollary 
4.3] in the setting of vector measures.

Theorem 3.2. For 1 < q ≤ ∞, it holds that

(
L∞(m), L1(m)

)
0,q;J =

(
L∞(m), L1

w(m)
)
0,q;J = L∞,q(logL)−1(‖m‖).

Proof. We set mΩ := ‖m‖(Ω). Since L1(m) ⊆ L1
w(m), it follows that

(
L∞(m), L1(m)

)
0,q;J ⊆

(
L∞(m), L1

w(m)
)
0,q;J .

In order to see that

(
L∞(m), L1

w(m)
)
0,q;J ⊆ L∞,q(logL)−1(‖m‖), (4)

we assume first that 1 < q < ∞. Namely, take any f ∈
(
L∞(m), L1

w(m)
)
0,q;J . According to inequality (2)

in Proposition 3.1, we have that

‖f‖L∞,q(logL)−1(‖m‖) =

⎛⎝ mΩ∫
0

[
(1 + | log t|)−1f∗(t)

]q dt

t

⎞⎠
1
q

�

⎛⎝ mΩ∫
0

[
(1 + | log t|)−1K(t−1, f ;L∞(m), L1

w(m))
]q dt

t

⎞⎠
1
q

.

The change of variables u = mΩ gives that

t
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‖f‖L∞,q(logL)−1(‖m‖) �

⎛⎝ ∞∫
1

[(
1 +

∣∣∣log mΩ

u

∣∣∣)−1
K

(
u

mΩ
, f ;L∞(m), L1

w(m)
)]q

du

u

⎞⎠
1
q

≤ max
{

1, 1
mΩ

}⎛⎝ ∞∫
1

[(
1 +

∣∣∣log mΩ

u

∣∣∣)−1
K(u, f ;L∞(m), L1

w(m))
]q

du

u

⎞⎠
1
q

.

In addition,

1 + |log u| = 1 +
∣∣∣∣log

(
u

mΩ
·mΩ

)∣∣∣∣ ≤ 1 +
∣∣∣∣log u

mΩ

∣∣∣∣ + |logmΩ| ≤
(

1 +
∣∣∣∣log u

mΩ

∣∣∣∣) (1 + |logmΩ|)

and so

(
1 +

∣∣∣log
(mΩ

u

)∣∣∣)−1
=

(
1 +

∣∣∣∣log
(

u

mΩ

)∣∣∣∣)−1

≤ 1 + |logmΩ|
1 + |log u| . (5)

Therefore, (5) and (1) yield

‖f‖L∞,q(logL)−1(‖m‖) � max
{

1, 1
mΩ

}
(1 + | logmΩ|)

⎛⎝ ∞∫
1

[
K

(
u, f ;L∞(m), L1

w(m)
)

1 + log u

]q
du

u

⎞⎠
1
q

= max
{

1, 1
mΩ

}
(1 + | logmΩ|) ‖f‖(L∞(m),L1

w(m))log,q;K � ‖f‖(L∞(m),L1
w(m))0,q;J .

When q = ∞ the inclusion (4) can be established by using the same reasoning with menor modifications.
Now we will prove that if 1 < q ≤ ∞,

L∞,q(logL)−1(‖m‖) ⊆
(
L∞(m), L1(m)

)
0,q;J . (6)

First we suppose that 1 < q < ∞. Define the function W (t) := 1
t(1 + | log t|)q . In order to use Hardy 

inequality for non-increasing functions (see [1, Theorem 1.7] and [40, Chapter 10]), let us check that

∞∫
r

W (t)
tq

dt ≤ q − 1
rq

r∫
0

W (t)dt, r > 0. (7)

Since t �→ t(1 + | log t|) is a non-decreasing function on (0, +∞), we have that

∞∫
r

W (t)
tq

dt =
∞∫
r

1
tq+1(1 + | log t|)q dt ≤

1
rq−1(1 + | log r|)q−1

∞∫
r

1
t2(1 + | log t|)dt

≤ 1
rq−1(1 + | log r|)q−1

∞∫
r

1
t2
dt = 1

rq(1 + | log r|)q−1 .

In other words,

∞∫
W (t)
tq

dt ≤ 1
rq(1 + | log r|)q−1 , for every r > 0. (8)
r
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On the other hand, we note that

r∫
0

W (t)dt ≥ 1
q − 1 · 1

(1 + | log r|)q−1 , for each r > 0. (9)

In fact, if 0 < r ≤ 1, it is clear that

r∫
0

W (t)dt =
r∫

0

1
t(1 + | log t|)q dt = 1

q − 1 · 1
(1 + | log r|)q−1 ,

and, for r > 1,

r∫
0

W (t)dt =
r∫

0

1
t(1 + | log t|)q dt ≥

1∫
0

1
t(1 + | log t|)q dt = 1

q − 1 .

Then, from (8) and (9), we have that

∞∫
r

W (t)
tq

dt ≤ 1
rq(1 + | log r|)q−1 ≤ q − 1

rq

r∫
0

W (t)dt, r > 0.

Hardy inequality with W (t) implies that, for every f ∈ L∞,q(logL)−1(‖m‖),

⎛⎝ ∞∫
0

1
t(1 + | log t|)q

⎡⎣1
t

t∫
0

f∗(s)ds

⎤⎦q

dt

⎞⎠
1
q

�

⎛⎝ ∞∫
0

[
f∗(t)

1 + | log t|

]q
dt

t

⎞⎠
1
q

= ‖f‖L∞,q(logL)−1(‖m‖). (10)

This in particular yields that the function 
1
t

t∫
0

f∗(s)ds is finite a.e. Hence, it can be easily deduced that 

f ∈ L1(‖m‖) and so f ∈ L1(m). Thus, for any f ∈ L∞,q(logL)−1(‖m‖), it follows from (1), inequality (3)
in Proposition 3.1, and (10) that

‖f‖(L∞(m),L1(m))0,q;J � ‖f‖(L∞(m),L1(m))log,q;K =

⎛⎝ ∞∫
1

[
K

(
t, f ;L∞(m), L1(m)

)
1 + log t

]q
dt

t

⎞⎠
1
q

�

⎛⎝ ∞∫
1

⎡⎣ t
∫ t−1

0 f∗(s)ds
1 + log t

⎤⎦q

dt

t

⎞⎠1/q

=

⎛⎝ 1∫
0

1
u(1 − log u)q

⎡⎣ 1
u

u∫
0

f∗(s)ds

⎤⎦q

du

⎞⎠
1
q

� ‖f‖L∞,q(logL)−1(‖m‖).

Then (6) is proved when 1 < q < ∞.
Finally, we will see that (6) also holds if q = ∞. Observe that

u∫
(1 + | log s|)ds ≤ 2u(1 + | log u|), for each u > 0. (11)
0
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Given f ∈ L∞,∞(logL)−1(‖m‖), from (11) it follows that

‖f‖L1(‖m‖) =
mΩ∫
0

f∗(t)dt =
mΩ∫
0

f∗(t)
1 + | log t| (1 + | log t|)dt

≤ 2mΩ (1 + |logmΩ|) ‖f‖L∞,∞(logL)−1(‖m‖),

and so f ∈ L1(‖m‖) ⊆ L1(m). By (1), inequality (3) in Proposition 3.1, and (11), we have that

‖f‖(L∞(m),L1(m))0,∞;J
� ‖f‖(L∞(m),L1(m))log,∞;K

= sup
t>1

{
K

(
t, f ;L∞(m), L1(m)

)
1 + log t

}

� sup
t>1

⎧⎨⎩ t
∫ t−1

0 f∗(s)ds
1 + log t

⎫⎬⎭ = sup
0<u<1

{ ∫ u

0 f∗(s)ds
u(1 − log u)

}

= sup
0<u<1

{∫ u

0
f∗(s)

1−log s (1 − log s)ds
u(1 − log u)

}

≤ sup
0<u<1

{∫ u

0 (1 − log s)ds
u(1 − log u)

}
‖f‖L∞,∞(logL)−1(‖m‖)

≤ 2 ‖f‖L∞,∞(logL)−1(‖m‖),

and the validity of (6) is proved for q = ∞. �
Remark 3.3. Regarding the inclusion (6) in the proof of Theorem 3.2, we note that applying [2, Theorem 
6.4 (6.7)] with λ = 1, a = q and α = −1, it follows that

1∫
0

⎡⎣ 1
t(1 − log t)

t∫
0

f∗(s)ds

⎤⎦q

dt

t
�

1∫
0

[
1

1 − log tf∗(t)
]q

dt

t
≤ ‖f‖qL∞,q(logL)−1(‖m‖),

for any f ∈ L∞,q(logL)−1(‖m‖). As a consequence, it is also possible to deduce that f ∈ L1(‖m‖) ⊆
L1(m). Then, reasoning as in the proof of Theorem 3.2, it can be proved that ‖f‖(L∞(m),L1(m))0,q;J �
‖f‖L∞,q(logL)−1(‖m‖). However, we have preferred in Theorem 3.2’s proof to show the concrete calculations 

for the validity of (7) with the function W (t) = 1
t(1 + | log t|)q , which leads to the validity of (10).

Remark 3.4. The next result extends some known results in the case of finite positive scalar measures (see 
[11, Corollaries 4.7 and 3.8]). In order to establish its assertion c), we will use that the norm

|||a|||0,q :=
( ∞∑

n=1

[
n− 1

q′ 2−θ0nK(2n, a;A0, A1)
]q) 1

q

considered in [11, Theorem 3.7] is equivalent to the quantity

⎛⎝ ∞∫ [
t−θ0(1 + log t)−

1
q′ K(t, a;A0, A1)

]q dt

t

⎞⎠
1
q

.

1
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Corollary 3.5. Let 1 < r < p < ∞, 1 < q ≤ ∞ and 
1
q

+ 1
q′

= 1. It holds that:

a) 
(
Lp,q(‖m‖), L1(m)

)
0,q;J =

(
Lp,q(‖m‖), L1

w(m)
)
0,q;J = Lp,q(logL)−

1
q′ (‖m‖).

b) (L∞(m), Lp,q(‖m‖))0,q;J = L∞,q(logL)−1(‖m‖).
c) (Lp,q(‖m‖), Lr,q(‖m‖))0,q;J = Lp,q(logL)−

1
q′ (‖m‖).

Proof. a) Note that [27, Corollary 2] (see also [4, Theorem 3.4.1 (a)]) gives that

Lp,q(‖m‖) = (L∞(m), L1(m)) 1
p ,q

= (L∞(m), L1
w(m)) 1

p ,q
.

In addition, by [11, Theorem 4.6 (a)], 
(
Lp,q(‖m‖), L1(m)

)
0,q;J = Γ p,q

L1 (m), where

Γp,q
L1 (m) :=

⎧⎪⎨⎪⎩f ∈ L1(m) :

⎛⎝ ∞∫
1

[
K

(
t, f ;L∞(m), L1(m)

)
t

1
p (1 + log t)

1
q′

]q
dt

t

⎞⎠
1
q

< ∞

⎫⎪⎬⎪⎭ .

Analogously, by [11, Theorem 4.6 (a)], 
(
Lp,q(‖m‖), L1

w(m)
)
0, q; J = Γ p,q

L1
w

(m), with

Γp,q
L1

w
(m) :=

⎧⎪⎨⎪⎩f ∈ L1
w(m) :

⎛⎝ ∞∫
1

[
K

(
t, f ;L∞(m), L1

w(m)
)

t
1
p (1 + log t)

1
q′

]q
dt

t

⎞⎠
1
q

< ∞

⎫⎪⎬⎪⎭ .

Due to L1(m) ⊆ L1
w(m), it holds that Γ p,q

L1 (m) ⊆ Γ p,q
L1

w
(m). Therefore, it is enough to check that

Lp,q(logL)−
1
q′ (‖m‖) ⊆ Γ p,q

L1 (m) and Γ p,q
L1

w
(m) ⊆ Lp,q(logL)−

1
q′ (‖m‖).

The inclusion Γ p,q
L1

w
(m) ⊆ Lp,q(logL)−

1
q′ (‖m‖) follows by using the same argument that in the proof of (4)

in Theorem 3.2 with minimal changes.
On the other hand, the inclusion Lp,q(logL)−

1
q′ (‖m‖) ⊆ Γ p,q

L1 (m) can be established by a similar reasoning 
to that used to see (6) in Theorem 3.2 (see also Remark 3.3). For the sake of completeness, we next give 
the main details. Given f ∈ Lp,q(logL)−

1
q′ (‖m‖), using [2, Theorem 6.4 (6.7)] with λ = 1 − 1

p , a = q and 
α = − 1

q′ ,

1∫
0

⎡⎣ t
1
p−1

(1 − log t)
1
q′

t∫
0

f∗(s)ds

⎤⎦q

dt

t
�

1∫
0

[
t

1
p

(1 − log t)
1
q′
f∗(t)

]q
dt

t
≤ ‖f‖q

Lp,q(logL)
− 1

q′ (‖m‖)
. (12)

Hence, it follows that f ∈ L1(‖m‖) ⊆ L1(m). By (1), inequality (3) in Proposition 3.1, and (12), we obtain 
that

‖f‖Γ p,q

L1 (m) =

⎛⎝ ∞∫
1

[
K

(
t, f ;L∞(m), L1(m)

)
t

1
p (1 + log t)

1
q′

]q
dt

t

⎞⎠
1
q

�

⎛⎜⎝ ∞∫
1

⎡⎢⎣ t1−
1
p

(1 + log t)
1
q′

t−1∫
0

f∗(s)ds

⎤⎥⎦
q

dt

t

⎞⎟⎠
1
q

=

⎛⎝ 1∫
0

⎡⎣ u
1
p−1

(1 − log u)
1
q′

u∫
0

f∗(s)ds

⎤⎦q

du

u

⎞⎠
1
q

� ‖f‖
Lp,q(logL)

− 1
q′ (‖m‖)

.

b) It follows as a straightforward consequence of [27, Corollary 2], [11, Theorem 4.6 (b)] and Theorem 3.2.
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c) By [27, Corollary 2], we have that

Lp,q(‖m‖) =
(
L∞(m), L1

w(m)
)

1
p ,q

and Lr,q(‖m‖) =
(
L∞(m), L1

w(m)
)

1
r ,q

.

Then, applying [11, Theorem 3.7] (see also Remark 3.4),

(Lp,q(‖m‖), Lr,q(‖m‖))0, q; J = Γ p,q
L1

w
(m).

And, as shown in the proof of a), Γ p,q
L1

w
(m) = Lp,q(logL)−

1
q
′
(‖m‖). �

Corollary 3.6. For any 1 < p, q < ∞,

(L∞(m), Lp(m))0,q;J = (L∞(m), Lp
w(m))0,q;J = L∞,q(logL)−1(‖m‖).

Proof. If 1 < q ≤ p < ∞, taking into account that Lp,q(‖m‖) ⊆ Lp(‖m‖) ⊆ Lp(m) ⊆ L1(m) (see [35, 
Propositions 5.1) and 7] and [33, Corollary 3.2]), it follows from Corollary 3.5.b) and Theorem 3.2 that

L∞,q(logL)−1(‖m‖) = (L∞(m), Lp,q(‖m‖))0, q; J ⊆ (L∞(m), Lp(‖m‖))0,q;J
⊆ (L∞(m), Lp(m))0,q;J ⊆

(
L∞(m), L1(m)

)
0,q;J = L∞,q(logL)−1(‖m‖).

Analogously, for 1 < p < q < ∞, since Lq(‖m‖) ⊆ Lp(‖m‖) ⊆ Lp(m) ⊆ L1(m) (see [35, Propositions 5.2) 
and 7] and [33, Corollary 3.2]), we have by applying Corollary 3.5.b) and Theorem 3.2 that

L∞,q(logL)−1(‖m‖) = (L∞(m), Lq(‖m‖))0,q;J ⊆ (L∞(m), Lp(‖m‖))0,q;J
⊆ (L∞(m), Lp(m))0,q;J ⊆

(
L∞(m), L1(m)

)
0,q;J = L∞,q(logL)−1(‖m‖).

Therefore (L∞(m), Lp(m))0,q;J = L∞,q(logL)−1(‖m‖), for 1 < p, q < ∞. Similar arguments can be used to 
obtain that

(L∞(m), Lp
w(m))0,q;J = L∞,q(logL)−1(‖m‖), 1 < p, q < ∞. �

4. Interpolation of p-th power factorable operators by limiting (1, q; K)-methods

We start recalling some basic information that we will need in this section. Given a Banach function 
space X on a finite measure space (Ω, Σ, μ) and a Banach space E, an operator T : X −→ E is said to be 
p-th power factorable, 1 ≤ p < ∞, if there is a constant K > 0 such that

‖T (f)‖E ≤ K
∥∥∥|f | 1p∥∥∥p

X
, f ∈ X.

Observe that the collection of all E-valued 1-th power factorable operators on X is exactly the class of 
continuous operators from X into E. We refer to [43, Chapters 5, 6 and 7], [36], [23] and [29] for wide 
information about p-th power factorable operators and other related questions.

Let X̄ = (X0, X1) be a Banach couple of function spaces on the same finite measure space (Ω, Σ, μ) such 
that X0 ⊆ X1. Let Ē = (E0, E1) be a couple of Banach spaces with E0 ⊆ E1. Assume that T is an admissible 
operator between the couples X̄ and Ē (that is, a continuous operator T : X1 → E1 whose restriction to 
X0 defines a continuous operator from X0 to E0). Let Ti := T|Xi

: Xi −→ Ei, i = 0, 1. In addition, let 
T1,q;K : (X0, X1)1,q;K −→ (E0, E1)1,q;K be the interpolated operator by the extreme real method (1, q; K).
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Inspired by certain results in [29] (see also [23]), we will establish that if T0 and T1 are p-th power 
factorable for some 1 < p < ∞ and X0 and X1 are order continuous then, T1,q;K is p-th power factorable 
for any 1 ≤ q < ∞.

Before continuing, let us remember what is the optimal domain of an operator. Given an order continuous 
Banach function space X on a finite measure space (Ω, Σ, μ) and a Banach space E, an operator T : X −→ E

is called μ-determined if the measures μ and mT have exactly the same null sets, where mT : Σ → E is the 
vector measure associated to T defined by mT (A) := T (χA). When T is μ-determined, the space L1(mT ) is 
an order continuous Banach function space on (Ω, Σ, μ), X is continuously embedded into L1(mT ) via the 
natural inclusion JT : f ∈ X −→ JT (f) := f ∈ L1(mT ), and the integration operator

ImT
: f ∈ L1(mT ) −→ ImT

(f) :=
∫
Ω

fdmT ∈ E

is the unique continuous linear extension of T satisfying that T = ImT
◦ JT (see [17] or [43, Proposition 

4.4]). Thus, if Y is another order continuous Banach function space such that X ⊆ Y and T : Y −→ E is 
a continuous linear extension of T , then Y ⊆ L1(mT ). In this sense, it is said that L1(mT ) is the (order 
continuous) optimal domain for the operator T .

Let us observe that if T1 is a μ-determined operator, then so are the operators T0 and T1,q;K . Denoting 
by mi := m

Ti
the vector measure associated to Ti, i = 0, 1, and by m1,q;K := m

T1,q;K
the vector measure 

associated to T1,q;K we have the optimal domains L1(m0), L1(m1) and L1(m1,q;K). Moreover, let us remark 
that if X0 and X1 are order continuous Banach function spaces and q < ∞, then (X0, X1)1,q;K is order 
continuous and so, in particular, 

(
L1(m0), L1(m1)

)
1,q;K is order continuous for 1 ≤ q < ∞. Note that similar 

arguments for the classical real method are still valid (see [20, Remarks 1.9 and 1.10, p. 17]).
Our first result relates the (1, q; K)-space 

(
L1(m0), L1(m1)

)
1,q;K of the optimal domains of T0 and T1

with the optimal domain L1(m1,q;K) of the interpolated operator T1,q;K .

Theorem 4.1. Let X̄ = (X0, X1) be a Banach couple of order continuous Banach function spaces on the 
same finite measure space such that X0 ⊆ X1. Let Ē = (E0, E1) be a couple of Banach spaces with E0 ⊆ E1. 
Assume that T is an admissible operator between the couples X̄ and Ē, and suppose that T1 is μ-determined. 
For every 1 ≤ q < ∞, (

L1(m0), L1(m1)
)
1,q;K ⊆ L1(m1,q;K). (13)

Proof. It is clear that L1(m0) ⊆ L1(m1) and thus 
(
L1(m0), L1(m1)

)
is an ordered Banach couple. Further-

more, 
(
L1(m0), L1(m1)

)
1,q;K is an order continuous Banach function space since L1(m0) and L1(m1) are 

order continuous.
Note also that the integration maps Im0 and Im1 coincide on L1(m0), that is, Im0(f) = Im1(f) for each 

f ∈ L1(m0). Thus, the operator T̂ : f ∈ L1(m1) −→ T̂ (f) := Im1(f) ∈ E1 verifies that T̂|L1(m0) = Im0 and 
T̂|X1 = T1. In addition, the restriction of the interpolated operator

T̂1,q;K : (L1(m0), L1(m1))1,q;K −→ (E0, E1)1,q;K

to the interpolated space (X0, X1)1,q;K coincides with the operator

T1,q;K : (X0, X1)1,q;K −→ (E0, E1)1,q;K .

Therefore, T̂1,q;K is a continuous linear extension of T1,q;K to the order continuous Banach function space (
L1(m0), L1(m1)

)
1,q;K . Then, the inclusion (13) follows by the optimality of the domain L1(m1,q;K) for the 

operator T1,q;K (see [17] or [43, Theorem 4.14]). �
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Theorem 4.2. Under the same hypotheses as Theorem 4.1, for any 1 ≤ q < ∞ and 1 ≤ p < ∞, it holds that 
(Lp(m0), Lp(m1))1,q;K ⊆ Lp (m1,q;K).

Proof. We may suppose that p > 1 because the case p = 1 is established in Theorem 4.1.
Using the fact that (Lp(m0), Lp(m1))1,q;K ⊆ (Lp(m0), Lp(m1))1,p q;K , it is sufficient to check that 

(Lp(m0), Lp(m1))1,p q;K ⊆ Lp(m1,q;K). To do this, we will see that |f |p ∈ L1(m1,q;K), for an arbitrary 
f ∈ (Lp(m0), Lp(m1))1,p q;K . In fact, by Theorem 4.1, we must only prove that |f |p ∈

(
L1(m0), L1(m1)

)
1,q;K

when f ∈ (Lp(m0), Lp(m1))1,p q;K . Applying [41, Theorem 1 and Lemma 1] we obtain that

‖|f |p‖q(L1(m0),L1(m1))1,q;K
=

∞∫
1

[
K

(
t, |f |p;L1(m0), L1(m1)

)
t

]q
dt

t

= p

∞∫
1

[
K

(
sp, |f |p;L1(m0), L1(m1)

)
sp

]q
ds

s

�
∞∫
1

[
K (s, |f |;Lp(m0), Lp(m1))p

sp

]q
ds

s

= ‖f‖p q
(Lp(m0),Lp(m1))1,p q;K

,

and the proof is concluded. �
As a consequence of Theorem 4.2 and a well-known characterization of p-th power factorable operators 

[43, Theorem 5.7 (iii)], we deduce the following result on interpolation of p-th power factorable operators 
by the (1, q; K)-method.

Corollary 4.3. Under the same assumptions that Theorem 4.1, if T0 : X0 −→ E0 and T1 : X1 −→ E1 are p-th 
power factorable operators for some 1 < p < ∞, then the operator T1,q;K : (X0, X1)1,q;K −→ (E0, E1)1,q;K
is also p-th power factorable for every 1 ≤ q < ∞.

Proof. Due to Ti is p-th power factorable, it holds that Xi ⊆ Lp(mi), i = 0, 1. Then, by Theorem 4.2, we 
obtain that (X0, X1)1,q;K ⊆ (Lp(m0), Lp(m1))1,q;K ⊆ Lp(m1,q;K) and so T1,q;K is a p-th power factorable 
operator. �

Next let us apply again Theorem 4.2 to deduce interpolation results for another class of operators, such 
as bidual (p, q)-power-concave operators. These operators were introduced in [43, Chapter 6] in connection 
with the Maurey-Rosenthal factorization theory. Consider a Banach function space X over a finite measure 
(Ω,Σ, μ). For 1 ≤ p, q < ∞, a μ-determined operator T : X −→ E, with values into a Banach space E, is 
said to be bidual (p, q)-power-concave if there exists a weight 0 < w ∈ L1(μ) such that X ⊆ Lq(w dμ) ⊆
Lp(mT ) (see [43, Theorem 6.9 and Remark 6.10 (I)]). Bidual (1, q)-power-concave operators are of particular 
relevance. They are known also as bidual q-concave operators. We recall that a bidual q-concave operator 
is, in particular, q-concave (see [43, Proposition 6.2 (i)] with p = 1).

Remark 4.4. In the definition of a bidual (p, q)-power-concave operator is essential the weighted Lebesgue 
space Lq(w dμ). This space is the Lebesgue Lq-space for the finite measure with density w given by A �→∫
A
w dμ, that is, a function f ∈ L0(μ) is in Lq(w dμ) if and only if 

∫
Ω |f |qwdμ < ∞. In Lq(w dμ) we consider 

the norm ‖f‖ q := ‖|f |qw‖
1
q
1 . It is clear that Lq(w dμ) is the same (isometrically) as the space 
L (w dμ) L (μ)
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Lq(w
1
q ) considered in [11]. Then, by using [11, Theorem 7.4] we get, for two weights w0 ≥ w1 > 0 μ-a.e., 

that

(Lq(w0 dμ), Lq(w1 dμ))1,q;K = Lq(w dμ), (14)

where w := w1

(
1 + 1

q
log w0

w1

)
and 1 ≤ q < ∞.

It is not difficult to check that 0 < w ≤ 1
q
w0 +

(
1 − 1

q

)
w1 μ-a.e, and then w ∈ L1(μ) if w0 and w1 are 

both in L1(μ).

Corollary 4.5. Under the same assumptions that Theorem 4.1, if T0 : X0 −→ E0 and T1 : X1 −→ E1 are 
bidual (p, q)-power-concave operators for some 1 ≤ p < ∞ and 1 ≤ q < ∞, then the interpolated operator 
T1,q;K : (X0, X1)1,q;K −→ (E0, E1)1,q;K is also bidual (p, q)-power-concave.

Proof. We must check that, for some function 0 < w in L1(μ), it holds that (X0, X1)1,q;K ⊆ Lq (w dμ) ⊆
Lp(m1,q;K). Since T0 and T1 are bidual (p, q)-power-concave, there exist two weights 0 < w0 and 0 < w1
in L1(μ) such that X0 ⊆ Lq(w0 dμ) ⊆ Lp(m0) and X1 ⊆ Lq(w1 dμ) ⊆ Lp(m1). We can assume that 
w0 ≥ w1 μ-a.e. If this is not the case, it would be enough to replace w0 by max{w0, w1}. Recall that 
Lq(w0 dμ) ∩ Lq(w1 dμ) = Lq(max{w0, w1} dμ). Therefore, we have the inclusions

(X0, X1)1,q;K ⊆ (Lq(w0 dμ), Lq(w1 dμ))1,q;K ⊆ (Lp(m0), Lp(m1))1,q;K

with w0 ≥ w1 μ-a.e. Now, by (14) the equality (Lq(w0 dμ), Lq(w1 dμ))1,q;K = Lq (w dμ) holds, where 0 < w

belongs to L1(μ). From Theorem 4.2 we know that (Lp(m0), Lp(m1))1,q;K ⊆ Lp(m1,q;K), and then

(X0, X1)1,q;K ⊆ Lq (w dμ) ⊆ Lp(m1,q;K),

as we wanted to prove. �
Corollary 4.6. Assume the same hypotheses as Theorem 4.1, and also suppose that X0 and X1 are q-convex 
Banach function spaces and T0 and T1 are q-concave operators. Then T1,q;K is q-concave for all 1 ≤ q < ∞.

Proof. By [43, Proposition 6.2 (iv) and equality (6.6)] it follows that T0 and T1 are bidual q-concave 
operators. Then so is T1,q;K , by Corollary 4.5 with p = 1. Applying [43, Proposition 6.2 (i)] we conclude 
that T1,q;K is q-concave. �
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