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Abstract. In this paper we introduce a function for multilinear operators
that can be considered as an extension of the so-called outer measure
associated to a linear operator ideal. We prove that it allows to charac-
terize the operators that belong to a closed surjective ideal of multilinear
operators as those having measure equal to zero. We also obtain some in-
terpolation formulas for this new measure. As a consequence we deduce
interpolation results for arbitrary closed surjective ideals of multilin-
ear operators which recover, in particular, different results previously
established in the literature.
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1. Introduction

The study of compact operators and weakly compact operators is an impor-
tant topic in the theory of operators and Banach spaces. A helpful tool to
investigate each one of these ideals of linear operators is to consider a func-
tional that shows the deviation of a bounded linear operator T : E → F
from the corresponding ideal. Examples of it are the (ball) measure of non-
compactness (in case of compact operators), defined as (see [25], [20] and
[11])

γ(T ) = inf
{
ε > 0 : T (BE) ⊆

m⋃
k=1

{yk + εBF }, yk ∈ F,m ∈ N
}
,

and the measure of weak non-compactness (in case of weakly compact oper-
ators), given by (see [16])

w(T ) = inf {ε > 0 : T (BE) ⊆ εBF +W, W ⊆ F weakly compact} .
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Compact operators and weakly compact operators are relevant exam-
ples of closed surjective ideals of linear operators. Other important exam-
ples of linear operator ideals which are also closed and surjective are strictly
cosingular operators, Rosenthal operators, Banach-Saks operators, operators
of separable range, limited operators, Grothendieck operators and Asplund
operators (also called decomposing operators).

Given any linear operator ideal I, the following functional introduced
by Astala [1] in 1980

γI (T ) := inf {ε > 0 : T (BE) ⊆ εBF +R(BZ),

for some Banach space Z and operator R ∈ I(Z;F )} ,

characterizes the operators T that belong to the closed surjective hull Isur

(i.e. the smallest closed surjective ideal containing I) of I as those for which
γI(T ) = 0 (see [1, Theorem 3.11]). In particular, the so-called outer measure
γI satisfies that γI (T ) = 0 if and only if T ∈ I, whenever I is a closed
surjective ideal.

Astala also proved that for I = K, the ideal of compact operators, γK(T )
coincides with the (ball) measure of non-compactness of T (see [1, Example
3.2(a)]). On the other hand, when I =W, the ideal of weakly compact opera-
tors, γW (T ) coincides with the measure of weak non-compactness introduced
by De Blasi (see [1, Example 3.2(b)]).

The research of different properties of γI , specially its behaviour under
interpolation, has been very useful and it has enabled to give an unified point
of view for previous results regarding certain linear operator ideals which
are closed and surjective (see for example [13], [15] and [14] and references
therein).

As far as we know, in the literature there is not a similar notion to the
measure γI in the setting of multilinear operators. In this paper we introduce
(Definition 3.2) a function for multilinear operators that can be considered
as an extension of the outer measure γI introduced by Astala. In addition
to showing some properties of this new measure, we prove that it allows to
characterize the operators that belong to a closed surjective ideal of multilin-
ear operators as those having measure equal to zero (see Theorem 3.1). We
also obtain interpolation formulas for the new measure (Theorems 4.1 and
4.4). Although we use similar ideas to the linear case to establish them, as a
consequence of these formulas we deduce interpolation results for arbitrary
closed surjective ideals of multilinear operators. Despite there are many rel-
evant examples where interpolation techniques have been used in the study
of concrete ideals of multilinear operators and related questions (see for in-
stance [10], [8], [22], [12] and [35]), as far as we know, interpolation results
established in the setting of general closed surjective ideals of multilinear op-
erators, such as those shown in this paper, are almost non-existent. We would
like to point out that some basic facts and techniques that are essential in the
linear operator theory cannot be translated to multilinear operators. In this
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sense, let us mention for example that the kernel or the range of a multilinear
operator is not necessarily a linear subspace.

In our interpolation results (Theorems 4.2 and 4.5 and Corollaries 4.6
and 4.7) we consider intermediate spaces of class CK(θ; Ēj) and bounded
multilinear operators acting from a product Σ(Ē1) × · · · × Σ(Ēn) of sums
of spaces from Banach couples Ē1, . . . , Ēn, into a fixed Banach space F (see
notation, definitions and precise results in Section 4). The most relevant in-
terpolation methods, that is, the classical real method Ēθ,q and the complex
method Ē[θ], produce interpolation spaces of class CK(θ; Ē). As a result of
Corollary 2.8, we show that each n-ideal [I1, . . . , In], where I1, . . . , In are
closed surjective linear operator ideals, turns out to be closed and surjec-
tive, and so our results can be applied to a good number of concrete closed
surjective ideals of multilinear operators (see Example 1). This also allows
to give an extension to the multilinear case of different well-known interpo-
lation results regarding important linear operator ideals (see Remark 4.8).
As another consequence, by considering the particular case of the ideal of
compact multilinear operators, we obtain for the classical real method and
the complex method some known compactness results of Lions-Peetre type
established for bilinear operators (see Remark 4.10). We find it convenient
to highlight the interest that interpolation of compact bilinear (multilinear)
operators is receiving in last years by the applications that these operators
have in harmonic analysis (see for instance [21], [22], [23], [34], [12], [35] and
references therein).

This paper continues the research started by the authors in [32], but
now dealing with the case of general closed surjective ideals of multilinear
operators and their interpolation properties.

2. Closed surjective ideals of multilinear operators

Next let us recall some basic definitions we will need throughout the paper.
We consider real or complex Banach spaces without distinction. If E1, . . . , En
and F are Banach spaces, then L(E1, . . . , En;F ) stands for the Banach space
of all continuous n-linear operators T : E1 × · · · × En → F with the norm

‖T‖ := sup{‖T (x1, . . . , xn)‖F : x1 ∈ BE1
, . . . , xn ∈ BEn},

where BEj is the closed unit ball of Ej , j = 1, . . . , n. In particular, L(E;F )
is the Banach space of all continuous linear operators from E into F .

Definition 2.1. Let n ∈ N be fixed. An ideal of n-linear operators, or an
n-ideal, is a class Mn of n-linear maps such that for all Banach spaces
E1, . . . , En and F , the componentsMn(E1, . . . , En;F ) := L(E1, . . . , En;F )∩
Mn satisfy

(i) Mn(E1, . . . , En;F ) is a linear subspace of L(E1, . . . , En;F ) that con-
tains the n-linear maps of finite type.

(ii) If R ∈ L(F ;H), T ∈ Mn(E1, . . . , En;F ) and Sj ∈ L(Gj ;Ej), for j =
1, . . . , n, then R ◦ T ◦ (S1, . . . , Sn) ∈Mn(G1, . . . , Gn;H).
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If for each n ∈ N, Mn is an ideal of n-linear operators, the class

M :=

∞⋃
n=1

Mn

is called an ideal of multilinear operators or a multi-ideal.

The symbol L will stand for the multi-ideal of all continuous multilinear
operators. To avoid confusions, we will use the letter I to denote a linear
operator ideal (instead of M1 or I1).

There are standard methods to construct multi-ideals from linear opera-
tor ideals. One of them is based on considering the linear mappings associated
to a multilinear operator and has its origin in the paper by Pietsch [38]. Next

let us review its construction. We will use the notational convention
[i]
· · · to

mean that the i-th term, or the i-th coordinate, does not appear.

Definition 2.2. Let I1, . . . , In be linear operator ideals. The n-ideal [I1, . . . , In]
is defined as follows: Let T ∈ L(E1, . . . , En;F ),

T ∈ [I1, . . . , In](E1, . . . , En;F ) if, and only if, Ti ∈ Ii(Ei;L(E1,
[i]. . ., En;F ))

for all i = 1, 2, . . . , n, where Ti : Ei → L(E1,
[i]. . ., En;F ) is defined as

Ti(xi)(x1,
[i]. . ., xn) := T (x1, . . . , xn), x1 ∈ E1, . . . , xn ∈ En.

As usual it is understood that if n = 1, then T1 = T for T ∈ L(E;F ) and
[I] = I for each linear operator ideal I.

Another way to construct multi-ideals is the composition method, that
produces a multi-ideal I ◦ L formed by all multilinear operators A = u ◦ B,
where B is a continuous multilinear operator and u belongs to the linear
operator ideal I. In a similar way to the multilinear case, ideals of polynomials
can be constructed. In particular, the composition ideal of polynomials I◦P is
defined in an analogous manner. An m-homogeneous polynomial is a mapping
P : E → F for which there exists an m-linear mapping T : E×· · ·×E → F so
that P (x) = T (x, . . . , x) for every x ∈ E. Given a continuous m-homogeneous
polynomial P : E → F , there is a unique continuous symmetric m-linear
operator P̌ such that P̌ (x, . . . , x) = P (x). In [9, Proposition 3.2(b)], it is
proved that P ∈ I ◦ P if, and only if, P̌ ∈ I ◦ L.

We also recall that Q ∈ L(E;F ) is called a metric surjection if Q
trasforms the open unit ball of E onto the open unit ball of F , that is, if

Q(
◦
BE) =

◦
BF . Given a Banach space E, QE : `1(BE)→ E will stand for the

natural metric surjection given by QE((λw)w∈BE ) :=
∑
w∈BE λww.

Definition 2.3. Let Mn be an n-ideal. It will be denoted by Mn the class of
n-linear operators formed by components Mn(E1, . . . , En;F ) that are given
by the closure of Mn(E1, . . . , En;F ) in L(E1, . . . , En;F ). An n-ideal Mn is
said to be closed when Mn =Mn.
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On the other hand,Msur
n (E1, . . . , En;F ) will denote the following class

of operators:

Msur
n (E1, . . . , En;F ) :=

{
T ∈ L(E1, . . . , En;F ) : there are Banach spacesZj

andP ∈Mn(Z1, . . . , Zn;F ) s.t.T (BE1
× · · · ×BEn)⊆ P (BZ1

× · · · ×BZn)
}
.

By a surjective n-idealMn we mean an n-idealMn such that, for any Banach
spaces E1, . . . , En and F , it holds that T ∈ Mn(E1, . . . , En;F ) whenever
T ∈Msur

n (E1, . . . , En;F ).

In [5] the concept of surjectivity of ideals of polynomials, and so sur-
jectivity of multi-ideals, has been considered from a different point of view.
According to [5, Corollary 4.3], for a surjective operator ideal I, the com-
position ideal I ◦ P is surjective in the sense of [5, Definition 2.1]. However,
it is not clear that the composition multi-ideal I ◦ L is surjective in the
sense of Definition 2.3 (see [5, Proposition 3.4] that relates both definitions
in the case of polynomials). Examples of composition ideals of polynomials
are compact polynomials and weakly compact polynomials, which turn out
to be composition of continuous polynomials with compact operators and
weakly compact operators, respectively. Analogously, compact and weakly
compact multilinear operators are examples of composition multi-ideals.

Remark 2.4. Note that if T ∈ L(E1, . . . , En;F ) is an operator such that
T ◦ (QE1 , . . . , QEn) ∈ Mn(`1(BE1), . . . , `1(BEn);F ), then it holds that T ∈
Msur

n (E1, . . . , En;F ). This directly follows from the fact that QEj (j =
1, . . . , n) is a metric surjection and thus, for any η > 0, it holds that

T (BE1
×· · ·×BEn) ⊆ (1+η)(T ◦ (QE1

, . . . , QEn))(B`1(BE1
)×· · ·×B`1(BEn )).

When n = 1, it is well-known that, given T ∈ L(E;F ), then T ◦ QE ∈
I(`1(BE);F ) if, and only if, T ∈ Isur(E;F ). The assertion “if” can be proved
by using a (fundamental) fact: if two operators S ∈ L(`1(I);F ) and R ∈
L(Z;F ) satisfy that S(B`1(I)) ⊆ R(BZ), then there is u ∈ L(`1(I);Z) such
that S = R ◦ u (see for instance [37, Lemma 8.5.4]).

The following lemma, inspired by [5, Proposition 3.3], provides a cer-
tain extension of the last fact mentioned in Remark 2.4 when S and R are
multilinear operators.

In what follows, given an arbitrary set I and any i ∈ I, by ei we mean
the element (λk)k∈I ∈ `1(I) defined as λi = 1 and λk = 0 for k 6= i.

Lemma 2.5. Let I1, . . . , In be sets and S ∈ L(`1(I1), . . . , `1(In);F ). If R ∈
L(Z1, . . . , Zn;F ) is such that for each j = 1, . . . , n and every ij ∈ Ij there
are zij ∈ BZj so that

S(ei1 , . . . , ein) = R(zi1 , . . . , zin)

for any i1 ∈ I1, . . . , in ∈ In, then there are uj ∈ L(`1(Ij);Zj), j = 1, . . . , n,
such that S = R ◦ (u1, . . . , un).
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Proof. For each j = 1, . . . , n, we define uj : `1(Ij) → Zj as uj(eij ) := zij .
Then, for any finite subset Fj ⊆ Ij we have:∥∥∥uj( ∑

ij∈Fj

aijeij

)∥∥∥
Zj

=
∥∥∥ ∑
ij∈Fj

aijzij

∥∥∥
Zj
≤
∑
ij∈Fj

|aij | =
∥∥∥ ∑
ij∈Fj

aijeij

∥∥∥
`1(Ij)

.

As finite sums are dense in `1(Ij), we can extend uj continuously to the whole
of `1(Ij). Hence,

R ◦ (u1, . . . , un)

(∑
i1∈F1

ai1ei1 , . . . ,
∑
in∈Fn

ainein

)

=R

(∑
i1∈F1

ai1zi1 , . . . ,
∑
in∈Fn

ainzin

)
=
∑
i1∈F1

· · ·
∑
in∈Fn

ai1 · · · ainR(zi1 , . . . , zin)

=
∑
i1∈F1

· · ·
∑
in∈Fn

ai1 · · · ainS(ei1 , . . . , ein)= S

(∑
i1∈F1

ai1ei1 , . . . ,
∑
in∈Fn

ainein

)
.

By continuity we can conclude that R ◦ (u1, . . . , un) = S. �

From Lemma 2.5, we obtain the next proposition that yields a necessary
and sufficient condition for T ◦ (QE1

, . . . , QEn) to belong to an n-ideal Mn.
When in particular n = 1, Proposition 2.6 recovers the equivalence T ◦QE ∈ I
if and only if T ∈ Isur, previously mentioned in Remark 2.4.

Proposition 2.6. Let Mn be an n-ideal and let T ∈ L(E1, . . . , En;F ). The
following assertions are equivalent:

(a) T ◦ (QE1
, . . . , QEn) ∈Mn(`1(BE1

), . . . , `1(BEn);F ).
(b) There are Banach spaces Zj and an operator R ∈ Mn(Z1, . . . , Zn;F )

so that for each j = 1, . . . , n and every ij ∈ BEj there is an element
zij ∈ BZj in such a way that

T (i1, . . . , in) = R(zi1 , . . . , zin), for any i1 ∈ BE1 , . . . , in ∈ BEn .

Proof. (a) ⇒ (b) If T ◦ (QE1 , . . . , QEn) ∈ Mn(`1(BE1), . . . , `1(BEn);F ), by
the definition of QEj (j = 1, . . . , n), the assertion (b) follows by taking the
operator R = T ◦ (QE1

, . . . , QEn).
(b) ⇒ (a) By hypothesis, there are Banach spaces Zj and an n-linear

operator R ∈ Mn(Z1, . . . , Zn;F ) so that for every ij ∈ BEj there is an
element zij ∈ BZj , j = 1, . . . , n, in such a way that

(T ◦ (QE1
, . . . , QEn))(ei1 , . . . , ein) = T (i1, . . . , in) = R(zi1 , . . . , zin),

for all i1 ∈ BE1
, . . . , in ∈ BEn . Lemma 2.5 allows to find operators uj ∈

L(`1(BEj );Zj), j = 1, . . . , n, such that T ◦(QE1
, . . . , QEn) = R◦(u1, . . . , un),

and so (a) holds. �

Remark 2.7. For the class of n-ideals [I1, . . . , In], it holds that [I1, . . . , In]sur

⊂ [Isur1 , . . . , Isurn ]. In fact, if there exist Banach spaces Zj (j = 1, . . . , n)
and an operator P ∈ [I1, . . . , In](Z1, . . . , Zn;F ) such that T (BE1

× · · · ×
BEn) ⊆ P (BZ1

× · · · × BZn), then in particular it follows that Ti(BEi) ⊆
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Pi(BZi), with Pi ∈ Ii(Zi;L(Z1,
[i]. . ., Zn;F )), for each i = 1, . . . , n. Then Ti ∈

Isuri (Ei;L(E1,
[i]. . ., En;F )), i = 1, 2, . . . , n, and thus T ∈ [Isur1 , . . . , Isurn ].

On the other hand, we also note that [I1, . . . , In] ⊂ [I1, . . . , In] for any linear
operator ideals I1, . . . , In (see for example [7, Section 3] and [32, Lemma
3.1(b)]).

As a straightforward consequence we obtain the following result.

Corollary 2.8. Let I1, . . . , In be linear operator ideals.

(a) If I1, . . . , In are surjective, then [I1, . . . , In] is a surjective n-ideal.
(b) If I1, . . . , In are closed, then [I1, . . . , In] is a closed n-ideal.

Observe that ifMn is a surjective n-ideal (Definition 2.3), according to
Remark 2.4, for each T ∈ L(E1, . . . , En;F ) such that T ◦ (QE1 , . . . , QEn) ∈
Mn(`1(BE1

), . . . , `1(BEn);F ), it follows that T ∈Mn(E1, . . . , En;F ). Thus,
Corollary 2.8(a) gives [24, Hilfssatz in p.154] without any hypothesis of in-
jectivity on the linear operator ideals I1, . . . , In.

Next we show some examples of closed surjective n-ideals.

Example 1. The n-ideal [I1, . . . , In] is closed and surjective whenever the
linear operator ideals I1, . . . , In vary among any of the following classes (to
mix different classes is allowed):

1. Compact operators.
2. Weakly compact operators.
3. Strictly cosingular operators.
4. Rosenthal operators.
5. Banach-Saks operators.
6. Operators of separable range.
7. Limited operators.
8. Grothendieck operators.
9. Asplund operators.

A table that summarizes the aforementioned properties for the linear
operator ideals enumerated above can be found in [26]. We refer to the classi-
cal books [17], [19], [29] and [37] for wide information about operator theory.

3. A measure associated to ideals of multilinear operators

A natural question is if it is possible to consider a similar notion to the outer
measure γI for multilinear operators. With the aim to give an answer to this
question, we establish the following theorem, which provides a necessary and
sufficient condition for a multilinear operator to belong to an n-ideal which is
closed and surjective. It extends to the multilinear case a well-known result
for linear operator ideals. To prove our result we use some ideas inspirated
by [27, Proposition 1.7] and [31, Teorema 1.4.2].

Theorem 3.1. Let Mn be an n-ideal which is closed and surjective. Let T ∈
L(E1, . . . , En;F ). The following assertions are equivalent:
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(a) T ∈Mn(E1, . . . , En;F ).
(b) For each ε > 0, there are Banach spaces Z1, . . . , Zn and an n-linear

operator R ∈Mn(Z1, . . . , Zn;F ) such that

T (BE1
× · · · ×BEn) ⊆ εBF +R(BZ1

× · · · ×BZn).

Proof. (a) ⇒ (b) trivially.
(b) ⇒ (a) By hypothesis, for any natural number k, it holds that

T (BE1
× · · · ×BEn) ⊆ 1

k
BF + Pk(BZk1 × · · · ×BZkn), (3.1)

for some Banach spaces Zk1 , . . . , Z
k
n and an operator Pk ∈Mn(Zk1 , . . . , Z

k
n;F ).

Let Λ := T ◦ (QE1
, . . . , QEn), i.e. Λ ∈ L(`1(BE1

), . . . , `1(BEn);F ) is given by

Λ((λw1)w1∈BE1
, . . . ,(λwn)wn∈BEn ) = T

( ∑
w1∈BE1

λw1w1, . . . ,
∑

wn∈BEn

λwnw
n
)

=
∑

w1∈BE1

· · ·
∑

wn∈BEn

λw1 · · ·λwnT (w1, . . . , wn).

SinceMn is a surjective n-ideal, in order to check that T ∈Mn(E1, . . . , En;F )
it is sufficient to prove that Λ ∈Mn(`1(BE1), . . . , `1(BEn);F ).
Let Υ := T (BE1 × · · · × BEn). By inclusion (3.1), it is possible to construct

mappings ϕk : Υ→ 1

k
BF and ψk : Υ→ Pk(BZk1 ×· · ·×BZkn) so that ϕk(υ)+

ψk(υ) = υ, for every υ ∈ Υ. We define Rk ∈ L(`1(BE1), . . . , `1(BEn);F ) and
Sk ∈ L(`1(BE1

), . . . , `1(BEn);F ), respectively, by

Rk((λw1)w1∈BE1
, . . . ,(λwn)wn∈BEn ) :=∑

w1∈BE1

· · ·
∑

wn∈BEn

λw1 · · ·λwnϕk(T (w1, . . . , wn)),

Sk((λw1)w1∈BE1
, . . . ,(λwn)wn∈BEn ) :=∑

w1∈BE1

· · ·
∑

wn∈BEn

λw1 · · ·λwnψk(T (w1, . . . , wn)).

It is clear that

Λ((λw1)w1∈BE1
, . . . , (λwn)wn∈BEn )

=
∑

w1∈BE1

· · ·
∑

wn∈BEn

λw1 · · ·λwnT (w1, . . . , wn)

=
∑

w1∈BE1

· · ·
∑

wn∈BEn

λw1 · · ·λwn
[
ϕk(T (w1, . . . , wn)) + ψk(T (w1, . . . , wn))

]
=

∑
w1∈BE1

· · ·
∑

wn∈BEn

λw1 · · ·λwnϕk(T (w1, . . . , wn))+

+
∑

w1∈BE1

· · ·
∑

wn∈BEn

λw1 · · ·λwnψk(T (w1, . . . , wn))

=Rk((λw1)w1∈BE1
, . . . , (λwn)wn∈BEn )+Sk((λw1)w1∈BE1

, . . . , (λwn)wn∈BEn ).
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Moreover, for any (λw1)w1∈BE1
∈ B`1(BE1

), . . . , (λwn)wn∈BEn ∈ B`1(BEn ),

‖Rk((λw1)w1∈BE1
, . . . , (λwn)wn∈BEn )‖F

=
∥∥∥ ∑
w1∈BE1

· · ·
∑

wn∈BEn

λw1 · · ·λwnϕk(T (w1, . . . , wn))
∥∥∥
F

≤
∑

w1∈BE1

· · ·
∑

wn∈BEn

|λw1 | · · · |λwn | ‖ϕk(T (w1, . . . , wn))‖F

≤ 1

k

∑
w1∈BE1

· · ·
∑

wn∈BEn

|λw1 | · · · |λwn | ≤
1

k
.

Hence, ‖Rk‖ ≤ 1
k and ‖Λ− Sk‖ = ‖Rk‖ → 0 as k →∞. On the other hand,

since Pk ∈Mn(Zk1 , . . . , Z
k
n;F ), Sk(B`1(BE1

)×· · ·×B`1(BEn )) ⊆ Pk(BZk1×· · ·×
BZkn) andMn is surjective, it follows that Sk ∈Mn(`1(BE1

), . . . , `1(BEn);F ).

Then, Λ ∈Mn(`1(BE1
), . . . , `1(BEn);F ), becauseMn is a closed n-ideal. �

Now, we introduce a function associated to an n-ideal Mn, inspired by
Theorem 3.1, that can be considered as an extension to the multilinear case
of the measure γI defined by Astala.

Definition 3.2. For any T ∈ L(E1, . . . , En;F ), let

γMn
(T ) = γMn

(T : E1 × · · · × En → F ) :=

inf
{
ε > 0 : T (BE1

× · · · ×BEn) ⊆ εBF +R(BZ1
× · · · ×BZn), for some

Banach spaces Zj and an n-linear operator R ∈Mn(Z1, . . . , Zn;F )
}
.

It directly follows from Theorem 3.1 that γMn
(T ) = 0 if and only if

T ∈Mn, for a closed surjective n-ideal Mn.

It is as well clear that for any T ∈ L(E1, . . . , En;F ), we have γMn
(T ) ≤

‖T‖L(E1,...,En;F ), because T (BE1
× · · · × BEn) ⊆ ‖T‖L(E1,...,En;F )BF . More-

over, it holds that γMn
(S ◦ T ) ≤ ‖S‖γMn

(T ), for each S ∈ L(F ;G).

Next we show some other properties of γMn
that recover when n = 1

those satisfied by the outer measure γI .

Proposition 3.3. Let Mn be an n-ideal and let T ∈ L(E1, . . . , En;F ).

(a) If qj ∈ L(Dj ;Ej) is a metric surjection (j = 1, . . . , n), then

γMn
(T ◦ (q1, . . . , qn)) = γMn

(T ).

(b) If j ∈ L(F ;G) is a metric injection, that is, ‖jy‖G = ‖y‖F for all y ∈ F ,
then

γMn
(j ◦ T ) ≤ γMn

(T ).

On the other hand, if F has the metric extension property (see definition
in [1, p. 18] or [37, C.3.1]), for each metric injection j ∈ L(F ;G), it
follows that γMn

(j ◦ T ) = γMn
(T ).
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(c) Let JF ∈ L(F ; `∞(BF∗)) denote the natural metric injection given by
JF (y) := (〈y, y∗〉)y∗∈BF∗ . It holds that

γMn
(JF ◦ T ) = min{γMn

(j ◦ T ) : where j : F → G is a metric injection}.

Proof. (a) Since qj ∈ L(Dj ;Ej) is a metric surjection, qj(BDj ) ⊆ BEj (j =
1, . . . , n) and so (T ◦ (q1, . . . , qn))(BD1

×· · ·×BDn) ⊆ T (BE1
×· · ·×BEn). In

order to check the inequality γMn
(T ) ≤ γMn

(T ◦ (q1, . . . , qn)), it is enough to
observe that, for each η > 0, it holds that T (BE1

× · · · ×BEn) ⊆ (1 + η)(T ◦
(q1, . . . , qn))(BD1

× · · ·×BDn). Hence, for every ε > γMn
(T ◦ (q1, . . . , qn)), it

follows that γMn
(T ) ≤ (1 + η)ε and (a) holds.

(b) If j ∈ L(F ;G) is a metric injection, then γMn
(j◦T ) ≤ ‖j‖γMn

(T ) ≤
γMn

(T ). Now, suppose that F has the metric extension property and let
j ∈ L(F ;G) be a metric injection. Then, it is possible to find φ ∈ L(G;F )

such that ‖φ‖ = 1 and φ ◦ ij(F ) = IF ◦ j
−1

|j(F )
, where ij(F ) stands for the

natural inclusion from j(F ) into G and IF the identity operator in F :

E1 × · · · × En
T

F

IF

F

?

- j(F )
j
-

ij(F )
- G
��������������)

φ

�

j
−1

| j(F )

Therefore,

γMn
(T ) = γMn

(φ ◦ ij(F ) ◦ j ◦ T ) ≤ ‖φ ◦ ij(F )‖γMn
(j ◦ T ) ≤ γMn

(j ◦ T ).

(c) Let j ∈ L(F ;G) be any metric injection. An analogous argument
as in the second part of the proof of (b) allows to see that γMn

(JF ◦ T ) ≤
γMn

(j ◦ T ). In fact, since `∞(BF∗) has the metric extension property, there

exists φ ∈ L(G; `∞(BF∗)) with ‖φ‖ = 1 and φ ◦ ij(F ) = JF ◦ j
−1

|j(F )
, and thus

γMn
(JF ◦T ) = γMn

(JF ◦ j
−1

|j(F )
◦ j ◦T ) ≤ ‖φ ◦ ij(F )‖γMn

(j ◦T ) ≤ γMn
(j ◦T ).

�

4. Some interpolation results and related consequences

Let us recall some basic definitions on interpolation theory. Let Ā = (A0, A1)
be a Banach couple, that is, A0 and A1 are two Banach spaces which are
continuously embedded in some Hausdorff topological vector space. The sum
Σ(Ā) := A0 +A1 and the intersection ∆(Ā) := A0∩A1 of A0 and A1 become
Banach spaces when endowed with the norms K(1, ·) and J(1, ·), respectively,
where the K- and J-functionals are defined, for t > 0, by

K(t, a) =K(t, a; Ā) := inf{‖a0‖A0+ t‖a1‖A1 : a = a0+a1, ai ∈ Ai}, a ∈ Σ(Ā).

J(t, a) = J(t, a; Ā) := max{‖a‖A0 , t‖a‖A1}, a ∈ ∆(Ā).
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A Banach space A is called an intermediate space with respect to Ā =
(A0, A1) if ∆(Ā) ↪→ A ↪→ Σ(Ā), where “↪→” means continuous inclusion.
An intermediate space A with respect to Ā = (A0, A1) is said to be of class
CK(θ; Ā), where 0 < θ < 1, if there is a constant C > 0 such that for all
t > 0 and a ∈ A,

K(t, a) ≤ Ctθ‖a‖A.

The real interpolation space (A0, A1)θ,q and the complex interpolation space
(A0, A1)[θ] are important examples of spaces of class CK(θ; Ā). We refer to
the books [4] and [39] for full information about fundamentals of interpolation
theory.

In Theorems 4.1 and 4.4 we will investigate interpolation properties of
the function γMn

, associated to an arbitrary n-idealMn. Our techniques are
inspired by ideas used in [13, Theorem 3.2] and [15, Theorem 3.2] (see also
[14]) for the linear case.

Theorem 4.1. Let Mn be an n-ideal. Let E1, . . . , En, F be Banach spaces.
Take any i = 1, . . . , n. Let X̄ = (X0, X1) be a Banach couple and assume
that X is an intermediate space of class CK(θ, X̄) with constant C. If T ∈
L(E1, . . . , Ei−1,Σ(X̄), Ei+1, . . . , En;F ), then

γMn
(T : E1 × · · · × Ei−1 ×X × Ei+1 × · · · × En → F )

≤C(1− θ)θ−1θ−θγMn
(T :E1 × · · · × Ei−1 ×X0 × Ei+1 × · · · × En → F )1−θ·

· γMn
(T : E1 × · · · × Ei−1 ×X1 × Ei+1 × · · · × En → F )θ.

Proof. Let εk > γMn
(T : E1 × · · · × Ei−1 × Xk × Ei+1 × · · · × En →

F ), k = 0, 1. There are Banach spaces Zkj and an n-linear operator Rk ∈
Mn(Zk1 , . . . , Z

k
n;F ) such that (for k = 0, 1)

T (BE1
×· · ·×BEi−1

×BXk×BEi+1
×· · ·×BEn) ⊆ εkBF +Rk(BZk1 ×· · ·×BZkn).

Take any η > 0 and t > 0. Put Zj := (Z0
j ⊕ Z1

j )∞, j = 1, . . . , n, and let
R ∈ L(Z1, . . . , Zn;F ) defined by

R
(
(z0

1 , z
1
1), . . . , (z0

n,z
1
n)
)

:=

C(1 + η)tθR0(z0
1 , . . . , z

0
n) + C(1 + η)tθ−1R1(z1

1 , . . . , z
1
n).

Since R = C(1 + η)tθR0 ◦ (φ0
1, . . . , φ

0
n) +C(1 + η)tθ−1R1 ◦ (φ1

1, . . . , φ
1
n), with

φkj : Zj → Zkj the natural projection, we have that R ∈ Mn(Z1, . . . , Zn;F ).

Moreover, due to X is of class CK(θ; X̄), given x ∈ BX , it is possible to find
x0 ∈ X0 and x1 ∈ X1 in such a way that x = x0 + x1 and

‖x0‖X0
+ t‖x1‖X1

≤ Ctθ + Cηtθ = C(1 + η)tθ.

This implies

‖x0‖X0 ≤ C(1 + η)tθ, ‖x1‖X1 ≤ C(1 + η)tθ−1.
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Therefore,

T (BE1
× · · · ×BEi−1

×BX ×BEi+1
× · · · ×BEn)

⊆ C(1 + η)tθ T (BE1
× · · · ×BEi−1

×BX0
×BEi+1

× · · · ×BEn)

+ C(1 + η)tθ−1 T (BE1
× · · · ×BEi−1

×BX1
×BEi+1

× · · · ×BEn)

⊆ C(1 + η)tθ
(
ε0BF +R0(BZ0

1
× · · · ×BZ0

n
)
)

+ C(1 + η)tθ−1
(
ε1BF +R1(BZ1

1
× · · · ×BZ1

n
)
)

⊆ C(1 + η)
(
tθε0 + tθ−1ε1

)
BF

+ C(1 + η)tθR0(BZ0
1
× · · · ×BZ0

n
) + C(1 + η)tθ−1R1(BZ1

1
× · · · ×BZ1

n
)

⊆ C(1 + η)
(
tθε0 + tθ−1ε1

)
BF +R(BZ1

× · · · ×BZn).

Then,

γMn
(T : E1×· · ·×Ei−1×X×Ei+1×· · ·×En → F ) ≤ C(1+η)

(
tθε0+tθ−1ε1

)
,

for any η > 0 and t > 0. Thus, for each t > 0,

γMn
(T : E1 × · · · × Ei−1 ×X × Ei+1 × · · · × En → F )

≤ CtθγMn
(T : E1 × · · · × Ei−1 ×X0 × Ei+1 × · · · × En → F )+

+ Ctθ−1γMn
(T : E1 × · · · × Ei−1 ×X1 × Ei+1 × · · · × En → F ).

It is clear that this implies that γMn
(T : E1×· · ·×Ei−1×X×Ei+1×· · ·×

En → F ) = 0, when γMn
(T : E1×· · ·×Ei−1×Xk×Ei+1×· · ·×En → F ) = 0

for k = 0 or k = 1.
On the other hand, if γMn

(T : E1×· · ·×Ei−1×Xk×Ei+1×· · ·×En →
F ) > 0 for k = 0, 1, it holds that

γMn
(T : E1 × · · · × Ei−1 ×X × Ei+1 × · · · × En → F )

≤ C inf
t>0

{
tθγMn

(T : E1 × · · · × Ei−1 ×X0 × Ei+1 × · · · × En → F )+

+ tθ−1γMn
(T : E1 × · · · × Ei−1 ×X1 × Ei+1 × · · · × En → F )

}
=C(1− θ)θ−1θ−θγMn

(T :E1 × · · · × Ei−1 ×X0 × Ei+1 × · · · × En → F )1−θ·

· γMn
(T : E1 × · · · × Ei−1 ×X1 × Ei+1 × · · · × En → F )θ.

�

Theorem 4.1 recovers [13, Theorem 3.2] when in particular n = 1. The
following result provides a multilinear version of [27, Proposition 1.7] and it
follows from Theorems 4.1 and 3.1.

Theorem 4.2. Let Mn be a closed surjective n-ideal. Let E1, . . . , En, F be
Banach spaces. Take any i = 1, . . . , n. Let X̄ = (X0, X1) be a Banach
couple and assume that X is an intermediate space of class CK(θ, X̄). For
every operator T ∈ L(E1, . . . , Ei−1,Σ(X̄), Ei+1, . . . , En;F ), it follows that
T ∈ Mn(E1, . . . , Ei−1, X,Ei+1, . . . , En;F ) whenever, for k = 0 or k = 1,
T ∈Mn(E1, . . . , Ei−1, Xk, Ei+1, . . . , En;F ).
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Before next remark let us note that if (Ω, µ) is a σ-finite measure space,
for 1 ≤ p0 6= p1 ≤ ∞, 1 ≤ q0, q1, q ≤ ∞, 0 < η < 1 and 1/p = (1−η)/p0+η/p1,
it holds with equivalence of norms that (see [4, Theorem 5.3.1])

(Lp0,q0(Ω), Lp1,q1(Ω))η,q = Lp,q(Ω).

In particular,

(Lp0(Ω), Lp1(Ω))η, q = Lp,q(Ω). (4.1)

As usual the Lorentz space for the case Ω = [0, 1], with Lebesgue measure,
will be denoted by Lp,q[0, 1].

Remark 4.3. According to [6, Counterexample 2.5] we note that even for
n = 1 an estimate as that given in Theorem 4.1 does not hold in general if
T ∈ L(E; ∆(F̄ )), where F̄ = (F0, F1) is a Banach couple and E is a Banach
space. For the sake of completeness, we include the details of that technical
counterexample.

First we recall that if 1 < p < ∞ and T stands for the identity oper-
ator, then T : Lp[0, 1] → L1[0, 1] is not a strictly singular operator because,
according to Khintchine’s inequality, the span of the Rademacher functions
in Lp[0, 1] and L1[0, 1] is isomorphic to `2. Thus, the restriction of T to
this subspace of Lp[0, 1] is an isomorphism into L1[0, 1]. Now, let I be the
closed surjective ideal of strictly cosingular operators (see [36] and [37]), and
consider E = L∞[0, 1] and the Banach couple F̄ = ((L∞[0, 1])∗, L∞[0, 1]).
Since T ∗ : L∞[0, 1] → (L∞[0, 1])∗ is weakly compact (due to the iden-
tity operator T : L∞[0, 1] → L1[0, 1] is weakly compact) and (L∞[0, 1])∗

has the Dunford-Pettis property (see [18, Section 19]), the operator T ∗ :
L∞[0, 1]→ (L∞[0, 1])∗ belongs to I (see [36, Proposition (4b)]). However, as
it was pointed out by Beucher [6, Counterexample 2.5], if T ∗θ,p′ belongs to the
ideal I, where T ∗θ,p′ denotes the interpolated operator by applying the real

method (·, ·)θ,p′ with θ = 1/p and 1/p + 1/p′ = 1, then it follows from [4,
Theorem 3.7.1] and (4.1) that the operator T ∗ : L∞[0, 1] → (Lp[0, 1])∗ also
belongs to I. But it implies that T : Lp[0, 1] → L1[0, 1] is a strictly singular
operator (see [36, Proposition (3a)]) which, as mentioned above, is a contra-
diction. In terms of the measure γI , this means that γI (T ∗ : E → F0) = 0,
but γI (T ∗θ,p′ : E → (F0, F1)θ,p′) > 0.

The next result provides an estimate for the measure of the interpo-
lated operator in terms of the corresponding restrictions of the operator
when the extreme intermediate spaces are considered, that is, in terms of
the restrictions T : E1 × · · · × Ei−1 × ∆(X̄) × Ei+1 × · · · × En → F and
T : E1 × · · · × Ei−1 × Σ(X̄)× Ei+1 × · · · × En → F .

Theorem 4.4. Let Mn be an n-ideal. Let E1, . . . , En, F be Banach spaces.
Take any i = 1, . . . , n. Let X̄ = (X0, X1) be a Banach couple and assume
that X is an intermediate space of class CK(θ, X̄) with constant C. If T ∈
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L(E1, . . . , Ei−1,Σ(X̄), Ei+1, . . . , En;F ), then

γMn
(T : E1 × · · · × Ei−1 ×X × Ei+1 × · · · × En → F )

≤ 4CγMn
(T : E1 × · · · × Ei−1 ×∆(X̄)× Ei+1 × · · · × En → F )Θ·

· γMn
(T : E1 × · · · × Ei−1 × Σ(X̄)× Ei+1 × · · · × En → F )1−Θ,

where Θ = min{θ, 1− θ}.

Proof. Let η > 0. We take any 0 < t ≤ 1 such that

tθ ≤ η and t1−θ ≤ η. (4.2)

Let σ > γMn
(T : E1 × · · · × Ei−1 × ∆(X̄) × Ei+1 × · · · × En → F ). There

exist Banach spaces Gj and an n-linear operator R ∈ Mn(G1, . . . , Gn;F )
such that

T (BE1
× · · · ×BEi−1

×B∆(X̄) ×BEi+1
× · · · ×BEn)

⊆ σBF +R(BG1
× · · · ×BGn).

(4.3)

On the other hand, if δ > γMn
(T : E1 × · · · × Ei−1 × Σ(X̄) × Ei+1 × · · · ×

En → F ) then, for certain Banach spaces Hj and n-linear operator S ∈
Mn(H1, . . . ,Hn;F ), it holds that

T (BE1
× · · · ×BEi−1

×BΣ(X̄) ×BEi+1
× · · · ×BEn)

⊆ δBF + S(BH1
× · · · ×BHn).

(4.4)

Let ε > 0. We put Zj := (Gj ⊕ Hj)∞, j = 1, . . . , n, and define the n-linear
operator P ∈ L(Z1, . . . , Zn;F ) as

P
(
(u1, v1), . . ., (un, vn)

)
:=

2C(1 + ε)ηt−1R(u1, . . . , un) + 2C(1 + ε)ηS(v1, . . . , vn).

In other words, P = 2C(1+ε)ηt−1R◦(φ0
1, . . . , φ

0
n)+2C(1+ε)ηS◦(φ1

1, . . . , φ
1
n),

where φ0
j : Zj → Gj and φ1

j : Zj → Hj are the natural projections. Whence
P ∈Mn(Z1, . . . , Zn;F ).
Using that X is of class CK(θ; X̄), given any x ∈ BX , there are decomposi-
tions of x as x = x0 + x1 = x′0 + x′1, with xk, x

′
k ∈ Xk (k = 0, 1), and

‖x0‖X0
+ t‖x1‖X1

≤ K(t, x) + Cεη ≤ Ctθ + Cεη ≤ C(1 + ε)η,

‖x′0‖X0 + t−1‖x′1‖X1 ≤ K(t−1, x) + Cεη ≤ Ct−θ + Cεη ≤ C(1 + ε)ηt−1.

Therefore,

‖xk‖Xk ≤ C(1 + ε)ηt−k, ‖x′k‖Xk ≤ C(1 + ε)ηtk−1, k = 0, 1. (4.5)

Now let y := x′0 − x0 = x1 − x′1 ∈ ∆(X̄). It follows from (4.5) that

‖y‖∆(X̄) ≤ max{‖x′0‖X0
+ ‖x0‖X0

, ‖x1‖X1
+ ‖x′1‖X1

}
≤ max{C(1 + ε)ηt−1 + C(1 + ε)η, C(1 + ε)ηt−1 + C(1 + ε)η}
≤ 2C(1 + ε)ηt−1,

(4.6)

and

‖x− y‖Σ(X̄) ≤ ‖x0‖X0 + ‖x′1‖X1 ≤ 2C(1 + ε)η. (4.7)
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By (4.6) and (4.7), we have that

BX ⊆ 2C(1 + ε)ηt−1B∆(X̄) + 2C(1 + ε)ηBΣ(X̄).

Then, according to (4.3) and (4.4),

T (BE1
× · · · ×BEi−1

×BX ×BEi+1
× · · · ×BEn)

⊆ 2C(1 + ε)ηt−1 T (BE1 × · · · ×BEi−1 ×B∆(X̄) ×BEi+1 × · · · ×BEn)

+ 2C(1 + ε)η T (BE1
× · · · ×BEi−1

×BΣ(X̄) ×BEi+1
× · · · ×BEn)

⊆ 2C(1 + ε)ηt−1
(
σBF +R(BG1

× · · · ×BGn)
)

+ 2C(1 + ε)η
(
δBF + S(BH1

× · · · ×BHn)
)

⊆ 2C(1 + ε)η
(
σt−1 + δ

)
BF

+ 2C(1 + ε)ηt−1R(BG1
× · · · ×BGn) + 2C(1 + ε)ηS(BH1

× · · · ×BHn)

⊆ 2C(1 + ε)η
(
σt−1 + δ

)
BF + P (BZ1 × · · · ×BZn).

Thus,

γMn
(T : E1 × · · · × Ei−1 ×X × Ei+1 × · · · × En → F ) ≤

2Cη
[
t−1γMn

(T : E1 × · · · × Ei−1 ×∆(X̄)× Ei+1 × · · · × En → F )+

+ γMn
(T : E1 × · · · × Ei−1 × Σ(X̄)× Ei+1 × · · · × En → F )

]
.

(4.8)

Since η is arbitrary, if γMn
(T : E1×· · ·×Ei−1×∆(X̄)×Ei+1×· · ·×En →

F ) = 0, then γMn
(T : E1 × · · · × Ei−1 ×X × Ei+1 × · · · × En → F ) = 0.

On the contrary, when γMn
(T : E1 × · · · ×Ei−1 ×∆(X̄)×Ei+1 × · · · ×

En → F ) > 0, it also holds that γMn
(T : E1 × · · · × Ei−1 × Σ(X̄) × Ei+1 ×

· · · × En → F ) > 0, because

γMn
(T : E1× · · · × Ei−1 ×∆(X̄)× Ei+1 × · · · × En → F )

≤ γMn
(T : E1 × · · · × Ei−1 × Σ(X̄)× Ei+1 × · · · × En → F ).

In that case, choose

η := max

{(
γMn

(T : E1 × · · · × Ei−1 ×∆(X̄)× Ei+1 × · · · × En → F )

γMn
(T : E1 × · · · × Ei−1 × Σ(X̄)× Ei+1 × · · · × En → F )

)θ
,

(
γMn

(T : E1 × · · · × Ei−1 ×∆(X̄)× Ei+1 × · · · × En → F )

γMn
(T : E1 × · · · × Ei−1 × Σ(X̄)× Ei+1 × · · · × En → F )

)1−θ}
.

The real number

t :=
γMn

(T : E1 × · · · × Ei−1 ×∆(X̄)× Ei+1 × · · · × En → F )

γMn
(T : E1 × · · · × Ei−1 × Σ(X̄)× Ei+1 × · · · × En → F )

≤ 1
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satisfies (4.2). If we denote Θ := min{θ, 1− θ} and substitute these concrete
choices of η and t in (4.8), we have that

γMn
(T : E1 × · · · × Ei−1 ×X × Ei+1 × · · · × En → F )

≤ 4CγMn
(T : E1 × · · · × Ei−1 × Σ(X̄)× Ei+1 × · · · × En → F )·

·max

{(
γMn

(T : E1 × · · · × Ei−1 ×∆(X̄)× Ei+1 × · · · × En → F )

γMn
(T : E1 × · · · × Ei−1 × Σ(X̄)× Ei+1 × · · · × En → F )

)θ
,

(
γMn

(T : E1 × · · · × Ei−1 ×∆(X̄)× Ei+1 × · · · × En → F )

γMn
(T : E1 × · · · × Ei−1 × Σ(X̄)× Ei+1 × · · · × En → F )

)1−θ}
= 4CγMn

(T : E1 × · · · × Ei−1 × Σ(X̄)× Ei+1 × · · · × En → F )·

·
(
γMn

(T : E1 × · · · × Ei−1 ×∆(X̄)× Ei+1 × · · · × En → F )

γMn
(T : E1 × · · · × Ei−1 × Σ(X̄)× Ei+1 × · · · × En → F )

)Θ

= 4CγMn
(T : E1 × · · · × Ei−1 ×∆(X̄)× Ei+1 × · · · × En → F ))Θ·
· γMn

(T : E1 × · · · × Ei−1 × Σ(X̄)× Ei+1 × · · · × En → F )1−Θ.

�

Note that it holds that γMn
(T : E1×· · ·×Ei−1×Σ(X̄)×Ei+1×· · ·×En →

F ) ≤ ‖T‖E1,...,Ei−1,X̄,Ei+1,...,En;F := max{‖T‖L(E1,...,Ei−1,Xk,Ei+1,...,En;F ) :

k = 0, 1} and so Theorem 4.4 extends [15, Theorem 3.2] to the case of ideals
of n-linear operators.

Theorems 4.4 and 3.1 yield the following result.

Theorem 4.5. LetMn be a closed surjective n-ideal. Let E1, . . . , En, F be Ba-
nach spaces. Take any i = 1, . . . , n. Let X̄ = (X0, X1) be a Banach couple and
let X be of class CK(θ, X̄). If T ∈ L(E1, . . . , Ei−1,Σ(X̄), Ei+1, . . . , En;F ),
it follows that T ∈ Mn(E1, . . . , Ei−1, X,Ei+1, . . . , En;F ) if, and only if,
T ∈Mn(E1, . . . , Ei−1,∆(X̄), Ei+1, . . . , En;F ).

As an application of our previous results we deduce interpolation results
on closed surjective n-ideals and operators acting from Σ(Ē1)× · · · ×Σ(Ēn)
into F , being Ē1, . . . , Ēn arbitrary Banach couples.

Corollary 4.6. LetMn be a closed surjective n-ideal. Let Ēj = (E0j , E1j) be a
Banach couple, j = 1, . . . n, and let F be a Banach space. Suppose that Ej is of
class CK(θj , Ēj), j = 1, · · · , n. For any operator T ∈ L(Σ(Ē1), . . . ,Σ(Ēn);F ),
it holds that T ∈ Mn(E1, . . . , En;F ) whenever T ∈ Mn(E01, . . . , E0n;F ) or
T ∈Mn(E11, . . . , E1n;F ).

Proof. Assume for example that T ∈ Mn(E01, . . . , E0n;F ). Taking into ac-
count that T ∈ L(Σ(Ē1), E02, . . . , E0n;F ), we have the situation that il-
lustrates the next diagram and so, applying Theorem 4.2, we obtain that
T ∈Mn(E1, E02, . . . , E0n;F ):
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E01 × E02 × · · · × E0n

E11 × E02 × · · · × E0n

F

PPPPPq

��
��
�1

T ∈Mn

T

=⇒E1 × E02 × · · · × E0n
- F .

T ∈Mn

Now we can consider T as an operator of L(E1,Σ(Ē2), E03, . . . , E0n;F ). If
we again use Theorem 4.2 according to the situation that shows the following
diagram, then it follows that T ∈Mn(E1, E2, E03, . . . , E0n;F ):

E1 × E02 × E03 × · · · × E0n

E1 × E12 × E03 × · · · × E0n

F

HHHj

��
�*

T ∈Mn

T

=⇒E1 × E2 × E03 × · · · × E0n
-
F .

T ∈Mn

The proof concludes repeating the same argument. �

Example 2. As a concrete example related to Corollary 4.6, we mention
that, for any closed surjective n-ideal Mn, any Banach couples of Lebesgue
spaces (Lp10(Ω1), Lp11(Ω1)), . . . , (Lpn0 (Ωn), Lpn1 (Ωn)), 1 ≤ pj0 6= pj1 ≤ ∞ (j =

1, . . . , n), and every bounded multilinear operator T from Lp10(Ω1)+Lp11(Ω1)×
· · · ×Lpn0 (Ωn) +Lpn1 (Ωn) into any Banach space F , it follows from Corollary

4.6 and (4.1) that if 1 ≤ qj ≤ ∞, 0 < ηj < 1 and 1/pj = (1− ηj)/pj0 + ηj/pj1,
then

T : Lp1,q1(Ω1)× · · · × Lpn,qn(Ωn)→ F belongs to the n-ideal Mn

when, for k = 0 or k = 1, the restriction

T : Lp1k(Ω1)× · · · × Lpnk (Ωn)→ F belongs to Mn.

Let us also notice that Sobolev spaces Hs
p and Besov spaces Bsp,q, which play

an important role in different branches of mathematics, can be obtained as
interpolation spaces by the real and complex methods (we refer to [4, Chapter
6] and [39, Chapter 2] for detailed information). Here we just mention as an
illustration that if 0 < θ < 1, sθ = (1− θ)s0 + θs1, 1/pθ = (1− θ)/p0 + θ/p1

and 1/qθ = (1− θ)/q0 + θ/q1,(
Bs0p0,q0 , B

s1
p1,q1

)
θ,pθ

= Bsθpθ,qθ

(for s0 6= s1, pθ = qθ and 1 ≤ p0, p1, q0, q1 ≤ ∞);(
Hs0
p , H

s1
p

)
θ,q

= Bsθp,q and
(
Hs
p0 , H

s
p1

)
θ,pθ

= Hs
pθ

(for s0 6= s1 and 1 ≤ p0, p1, p, q ≤ ∞);(
Bs0p0,q0 , B

s1
p1,q1

)
[θ]

= Bsθpθ,qθ and
(
Hs0
p0 , H

s1
p1

)
[θ]

= Hsθ
pθ

(for s0 6= s1, 1 < p0, p1 <∞ and 1 ≤ q0, q1 ≤ ∞).
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Corollary 4.6 complements [24, Theorem 1]. From Theorem 4.5 we now
establish an interpolation result in terms of the extreme restriction T :
∆(Ē1)× · · · ×∆(Ēn)→ F , which improves Corollary 4.6 .

Corollary 4.7. Let Mn be a closed surjective n-ideal. Let Ēj be a Banach
couple, j = 1, . . . n, and let F be a Banach space. Suppose that Ej is of class
CK(θj , Ēj), j = 1, . . . , n. For any T ∈ L(Σ(Ē1), . . . ,Σ(Ēn);F ), it holds that
T ∈Mn(E1, . . . , En;F ) if, and only if, T ∈Mn(∆(Ē1), . . . ,∆(Ēn);F ).

Proof. Due to Mn is an n-ideal and ∆(Ēj) ↪→ Ej , j = 1, . . . , n, it is clear
that if T ∈ Mn(E1, . . . , En;F ), then T ∈ Mn(∆(Ē1), . . . ,∆(Ēn);F ). Re-
ciprocally, assume that T ∈ Mn(∆(Ē1), . . . ,∆(Ēn);F ). Then, taking into
account that T ∈ L(Σ(Ē1),∆(Ē2), . . . ,∆(Ēn);F ), Theorem 4.5 implies that
T ∈ Mn(E1,∆(Ē2), . . . ,∆(Ēn);F ). Applying again Theorem 4.5 to T as an
operator of L(E1,Σ(Ē2),∆(Ē3), . . . ,∆(Ēn);F ), it is possible to deduce that
T ∈Mn(E1, E2,∆(Ē3), . . . ,∆(Ēn);F ). The proof finishes by a repetition of
this reasoning. �

Remark 4.8. By Corollary 2.8, when I1, . . . , In are closed surjective linear
operator ideals, we know that Mn = [I1, . . . , In] is a closed surjective n-
ideal and so Corollaries 4.6 and 4.7 can be applied to Mn. Having in mind
Example 1, it allows to establish results on interpolation of concrete closed
surjective ideals of multilinear operators. In particular, if Mn = [I, . . . , I]
and I is any of the ideals considered in Example 1, we obtain an extension
to the multilinear case of well-known interpolation results established in the
setting of linear operator ideals (see for example [4, Theorem 3.8.1(i)], [27,
Proposition 1.7], [33, Theorem 2.8] for ϕ(t) = tθ, 0 < θ < 1, [6, Proposition
2.2 and Theorem 3.4] and [30, Proposition 3]).

Let us also note that when combining Corollary 4.7 and [32, Corollary
4.4] immediately follows the next result that applies to an n-ideal which
is closed, surjective and injective (see definition of injective n-ideal in [32,
Definition 2.4]).

Corollary 4.9. Let Mn be a closed surjective injective n-ideal. Let Ēj , j =
1, . . . n, and F̄ be Banach couples. Assume that Ej is of class CK(θj , Ēj), j =
1, . . . , n, and F is of class CJ(η, F̄ ). If T ∈ L(Σ(Ē1), . . . ,Σ(Ēn); ∆(F̄ )), then
T ∈Mn(E1, . . . , En;F ) if, and only if, T ∈Mn(∆(Ē1), . . . ,∆(Ēn); Σ(F̄ )).

By LK we denote the class of compact multilinear operators. Recall
that an operator T ∈ L(E1, . . . , En;F ) is said to be compact if T (BE1

×· · ·×
BEn) is a relatively compact subset of F or, equivalently, if for any bounded
sequence {(xk1 , . . . , xkn)}k∈N in E1×· · ·×En, the sequence {T (xk1 , . . . , x

k
n)}k∈N

has a convergent subsequence in F (see for example [7, p. 308] or [3, p. 3610]).
The problem of interpolation of compact bilinear (multilinear) operators has
attracted the interest of different authors in recent years (see for instance [21],
[22], [23], [34], [12], [35] and references given there). This interest is specially
motivated by the fact that compact bilinear (multilinear) operators appear
naturally in harmonic analysis (see for example [3], [2] and [28]).
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Remark 4.10. It is well-known that (LK)n is a closed surjective n-ideal.
Therefore, applying Corollary 4.6 or Corollary 4.7 (when n = 2) we deduce
[22, Theorem 5.1], when Γ0 = `q0(2−θ0m) and Γ1 = `q1(2−θ1m), and also [22,
Corollary 5.5] (see as well [12, Theorem 2.1]). We would like to mention that
(LK)n is in addition an injective n-ideal and so [32, Corollary 4.2 or Corol-
lary 4.4] (for n = 2) allows to obtain a compactness result of Lions-Peetre
type when the source space is a product of fixed Banach spaces, namely [22,
Theorem 5.3], in case Γ = `q(2

−θm), and [22, Corollary 5.6] (see also [12,
Theorem 2.2]).
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