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Abstract: The production of raw-crushed wind-turbine blade (RCWTB) and its addition to conven-
tionally designed self-compacting Concrete (SCC) enable us to provide a second life to wind-turbine
blades. However, SCC containing RCWTB must show proper fresh behavior, an aspect evaluated
in this paper both experimentally and through simulations based on computational fluid dynamics
(CFD) for RCWTB additions up to 3.0% by volume. In experimental terms, RCWTB reduced the
flowability and passing ability of SCC, and slowed SCC flow, although the performance of SCC with
1.5% RCWTB was adequate under free-flow conditions. In terms of modeling, RCWTB did not impact
yield stress and increased plastic viscosity. CFD modeling under free flow, regardless of the presence
or not of obstacles simulating concrete reinforcement, was successful, especially in the long term.
Nevertheless, the modeling of the passing ability was not accurate; precision could be improved
by simulating the effect of the individual GFRP fibers within the SCC flow. Finally, the mechanical
properties of SCC were negatively impacted by RCWTB, the stitching effect of the GFRP fibers not
being effective in an SCC with a conventional design. A specific SCC design when adding RCWTB is
therefore needed to advance in the use of this waste in this concrete type.

Keywords: raw-crushed wind-turbine blade; self-compacting concrete; flowability; passing ability;
computational fluid dynamics; Bingham equation

1. Introduction

Self-compacting concrete (SCC) is a type of concrete with high-performance fresh
behavior [1]. Its high flowability and low viscosity allows free flowing and proper formwork
filling without compaction, which in turn saves energy [2]. This optimal fresh behavior
makes it the preferred type of concrete when there are large pumping heights [3], when the
reinforcement of a structural element is very heavy [4], and in the precast-concrete industry,
since the reduction of energy consumption due to vibration allows for cost savings [5].
This high flowability is achieved with a specific composition, which is based on a high
proportion of fine aggregate (size less than 0.063 mm) [6], an adjusted content of coarse
aggregate [7], and the use of superplasticizers [8].

SCC composition has major importance, since any modification to it alters SCC fresh
behavior [6,7], which may even cause the concrete mix to lose its self-compactability [9].
Thus, the impact of any alternative raw material must be examined in great detail:

• First, the so-called alternative or sustainable aggregates can be mentioned. Their usu-
ally irregular shape causes them to exhibit greater friction with other SCC components
when dragged by the cement paste [4,10]. The cement paste of SCC therefore needs
to be denser and more compact in order to be able to achieve proper flowability [11].
They also affect the granular skeleton and, in turn, the packing level when fresh [12,13].
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Furthermore, each of them has its own peculiarity. For example, recycled concrete
aggregate shows high water-absorption levels [14], which, if not compensated for in
the mix design, will make SCC insufficiently flowable [15]. Another example is electric
arc furnace slag, an aggregate with a high density [16] that requires SCC to have a
cement paste with a high proportion of aggregate particles of less than 0.50 mm to
reach a sufficient high dragging capacity [17].

• Second, there are alternative binders. They enable the cement content of SCC to
be reduced, thus improving its sustainability [18,19]. However, they have different
characteristics than ordinary Portland cement, which alter the cement-paste dragging
capacity [18]. Some of the most studied examples are ground granulated blast-furnace
slag and silica fume. Ground granulated blast-furnace slag has a higher ground
fineness than conventional cement (higher specific surface area) [20], which decreases
the compactness of the cement paste [21]. This in turn means that a SCC with good
performance in the fresh state can only be achieved if the coarse-aggregate content is
adjusted, commonly reducing it [22]. Silica fume tends to agglomerate [23], hindering
the creation of a workable cement paste [24]. In this case, a proper mixing process that
ensures its adequate dispersion is key to achieve self-compactability [25].

• Fibers are the last concrete component to be highlighted. These elements act as a three-
dimensional reinforcement in hardened concrete, which increases flexural strength,
reduces shrinkage and improves durability by limiting the formation and propagation
of cracks [26,27]. However, their impact on the fresh state of the SCC is negative, as
they interfere with the movement of the rest of the SCC components, mainly hindering
the flow of the coarse aggregate [28]. A sufficiently compact cement paste in the fresh
state by a proper amount of fine aggregate and adding an adequate proportion of
fibers is key for SCC manufacturing when adding fibers [9,28].

The blades from dismantled wind turbines currently cause a great environmental
impact, as the recycling of their constituent materials is not easy [29,30]. These constituents
are basically glass fiber-reinforced polymer (GFRP), balsa wood, and different types of
polymers, which are usually glued together [31]. Furthermore, the need to find a solution
for the recycling of such wind-turbine components is becoming increasingly pressing. In
Europe alone, it is estimated that 77,000 wind-turbine blades will need to be recycled over
the next 20 years [32]. One of the recycling possibilities has been the separation of these
constituents by cutting and then managing them separately [33,34]. Polymers and balsa
wood can be easily managed in this way, but GFRP recycling still remains complicated [35].
One possible route whose validity has been researched is a thermal and chemical process
to separate the glass fibers from the polymer matrix [36], but the mechanical properties of
fiberglass are significantly degraded, which hinders their use [37]. Another research avenue
has been the mechanical crushing of GFRP, which yields GFRP fibers that can be used as
a concrete component and eliminates the need to separate the GFRP constituents [33,38].
These GFRP fibers provide load-bearing capacity to concrete [39].

The authors of this research are currently going a step further and are evaluating
the suitability of the simultaneous crushing of all the constituents of wind-turbine blades.
This mechanical treatment leads to raw-crushed wind-turbine blade (RCWTB) [40], and
simplifies the recycling process, as all the constituents of the wind-turbine blades can be
managed simultaneously [33,36]. This waste is composed not only of GFRP fibers, but also
of polymer and balsa-wood particles, with an approximately spherical shape [40]. Its use in
contents of up to 6% by volume for the production of concrete of conventional workability
has been successful, even improving its flexural strength [41]. Thus, the next step in this
line of research is to propose the use of this waste for the manufacture of SCC. However, a
preliminary evaluation of how the reduced RCWTB content affects the flowability of SCC
is needed in order to later advance the formulation of a suitable SCC when adding this
waste [17,42]. This aspect, which has yet to be covered in the concrete-science literature to
date, is evaluated in this scientific paper.
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The evaluation of SCC flowability through laboratory tests is the most common way to
know the impact of the use of an alternative raw material on fresh SCC. Nevertheless, this
experimental evaluation requires time and specific equipment [43]. Fluid simulation tools
such as computational fluid dynamics (CFD) can soften that analysis, apart from allowing
it to deepen the flowability of SCC in terms of viscosity [44]. CFD can model any fluid as
homogeneous and divide it into uniform small elements to which mathematical equations
describing the fluid motion are applied [45]. The solution of those equations simulates
fluid movement and flow patterns [2]. When applied to SCC, CFD can focus on flowability,
pumping processes, and fiber movement within the cement paste [46]. Nevertheless, the
non-Newtonian behavior of SCC has to be considered for a successful simulation [47].
Although different constitutive laws can be used for that, the Bingham equation is usually
chosen due to its simplicity and faithful similarity to real behavior [48].

The fresh performance of SCC containing up to 3% by volume of RCWTB is analyzed
both experimentally and through CFD in this research. Simulations are conducted based
on experimental measurements of the free flow of SCC to elucidate the effect of RCWTB on
the viscosity of SCC and to define its relationship with the free-flow experimental results.
From that point, the passing ability of SCC is also modeled through CFD with the aim
of evaluating the suitability of this methodology to explain it. Finally, the mechanical
properties of the SCC mixes are briefly addressed to offer an overview of SCC behavior.
The goal is initially approaching the behavior of conventionally designed SCC with RCWTB
to provide a new path for the re-evaluation of wind-turbine blades.

2. Materials and Methods
2.1. Raw Materials
2.1.1. Conventional Raw Materials

SCC was composed of CEM II/A-L 42.5 R cement, superplasticizers, water, siliceous
gravel 4/12 mm, siliceous sand 0/4 mm, and limestone sand 0/2 mm.

• Cement was standardized as per EN 197-1 [49]. Its main characteristic was a limestone
content between 6% and 20% by weight, which allowed reducing the environmental
impact related to cement use [19].

• The superplasticizers were polycarboxylate-based. They had been used in previous
research by the authors, in which they showed adequate performance when used to
produce SCC [5,22]. The water was provided by the municipal water supply.

• Three aggregate fractions were considered to reach adequate aggregate-particle pack-
ing, thus providing the SCC with a suitable granular skeleton [17]. Furthermore,
limestone sand 0/2 mm provided the necessary fine aggregate content to achieve
SCC [50]. The appearance of the aggregates is shown in Figure 1. Their chemical
and physical properties are detailed in Table 1, and their gradations are depicted in
Figure 2.
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Table 1. Physical and chemical properties of aggregates.

Property Standard Siliceous 4/12 mm Siliceous 0/4 mm Limestone 0/2 mm

Fine content (%) EN 933-1 [51] 0.3 1.5 2.0
Equivalent sand (%) EN 933-8 [52] - 77 79

Saturated-surface-dry density (Mg/m3) EN 1097-6 [53] 2.66 2.65 2.64
Water absorption (% wt.) EN 1097-6 0.66 0.74 0.52
Flakiness index (% wt.) EN 933-3 [54] 4.5 - -

Water soluble chloride content (% wt.) EN 1744-1 [55] 0.00 0.00 0.01
Sulfur content (% wt.) EN 1744-1 0.00 0.01 0.01

Acid soluble sulfates (% wt.) EN 1744-1 0.01 0.01 0.02
Light pollutants (%wt.) EN 1744-1 0.00 0.00 0.01
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2.1.2. Raw-Crushed Wind-Turbine Blade (RCWTB)

The RCWTB used for SCC development was obtained by shredding panels of wind-
turbine blades such as those shown in Figure 3a. These panels were composed of GFRP,
balsa wood, and polymers. They were first cut into roughly square pieces with a side
length of around 20 cm, and then crushed by a knife mill and screened with a sieve with
a mesh size of 10 mm. Those particles that did not pass through the sieve were crushed
again until the particles passed. The resulting material can be seen in Figure 3b, which had
a real density of 1.63 Mg/m3 (EN 1097-6 [53]).
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The RCWTB was composed of balsa-wood particles (6.3% wt.), polymer particles
(8.3% wt.), GFRP micro-fibers and small non-separable particles (18.6% wt.), which were
agglomerated in the form of fluffs, and GFRP fibers (66.8% wt.). All these components can
be seen in Figure 4. The particles of polymers and balsa wood could act as lightweight
aggregates in the SCC [56], and the GFRP fibers could form a three-dimensional reinforce-
ment in the hardened SCC, but also negatively affect its flowability in the fresh state [28].
The fibers exhibited a 13.1-mm average length, and an average tensile strength of 270 MPa.
A much more detailed description of this material is shown in the previous work of the
research group [40].
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2.2. SCC Design

Conventional SCC design following the previous experience of the authors in SCC
with different wastes was conducted [9,17,22]. SCC with 0% vol. RCWTB (RW mix) was first
designed to reach an SF2 slump-flow class as per EN 206 [57]. To perform this, 320 kg/m3

of cement, a water/cement ratio of 0.48, and a superplasticizer amount of 2.4% wt. of
cement mass were considered. Furthermore, the joint gradation of the aggregates was
determined by Faury’s curve, although the amount of fine aggregate was defined through
the Fuller’s aggregate gradation, as can be observed in Figure 5. In this way, both adequate
particle packing and fine aggregate content were ensured [7].
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1.5% vol. and 3.0% vol. RCWTB (W1.5 and W3.0 mixes) were subsequently
added to SCC as overall additions. The water/cement ratio was increased by around
0.08 per 1.5% RCWTB to partially compensate its negative effect on flowability accord-
ing to our experience [40]. The superplasticizer content was not modified in order not
to introduce more variables that could affect the fresh behavior of the SCC, since this
research was the first approach for the development of SCC containing RCWTB.
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The composition of the three SCC mixes developed in this study is detailed in Table 2.
The use of RCWTB as an overall addition while maintaining the amount of the rest of the
components constant caused the volume of SCC produced to increase, as can be perceived
in the last row of Table 2. Thus, the composition of SCC is shown both in comparative
terms and in kg/m3 in it. The former allows us to comprehend the proportioning of the
mixes comparatively, while the latter allows us to understand the decrease in cement
content caused by the addition of RCWTB. Therefore, the use of RCWTB also increased the
sustainability of SCC, similar to its use in conventional-workability concrete [41].

Table 2. SCC composition.

Component
Comparative Composition kg/m3 Composition

RW W1.5 W3.0 RW W1.5 W3.0

Cement 320 320 320 318.8 305.1 293.9
Water 155 185 210 154.4 176.4 192.9

Limestone sand 0/2 mm 680 680 380 677.4 648.3 624.5
Siliceous sand 0/4 mm 660 660 660 657.5 629.3 606.1

Siliceous gravel 4/12 mm 600 600 600 597.7 572.1 551.0
Superplasticizers 6.7 6.7 6.7 6.7 6.4 6.1

RCWTB 0.0 24.5 49.0 0.0 23.4 45.0
Volume (liters) 1004 1049 1089 1000 1000 1000

2.3. Experimental Tests in the Fresh State

Fresh tests were performed to evaluate the flowability and passing ability of SCC.
Slump-flow, 3-bar L-box, and 16-bar J-ring tests were conducted according to EN 12350-
8 [58], EN 12350-10 [59], and EN 12350-12 [60], respectively. Three determinations were
performed for each test in each SCC mix.

• The slump-flow test (Figure 6a) consisted of allowing the free flow of SCC after putting
it into the Abrams cone and carefully lifting it in a vertical direction. The maximum
spreading diameter in two perpendicular directions was measured, whose average
value is named SCC slump flow. The time that SCC took to reach a slump flow of
500 mm was also recorded (t500 time) [22].
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• The 3-bar L-box test (Figure 6b) involved placing SCC in the vertical part of a 90-degree
box. After that, a door located at the bottom of the vertical zone was opened, which
allowed the concrete to flow through three bars simulating concrete reinforcement.
The SCC flowed along the horizontal zone, with the SCC height being measured both
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at the end of the horizontal zone and before the gate when the SCC flow ended. The
quotient between these two heights is named blocking ratio, which is the result of this
test [28].

• Finally, the 16-bar J-ring test (Figure 6c) was performed identically to the slump-flow
test, but placing a ring in the center of the concrete flow zone whose bars simulated
concrete reinforcement. The same values as in the slump-flow test were measured,
along with the difference in the height of SCC between the ring’s center and immedi-
ately after the bars to evaluate the passing capacity of SCC. This value is referred to as
the J-ring blocking ratio.

Depending on the values obtained in each fresh-behavior test, SCC is assigned dif-
ferent classifications according to the indications of the European Federation of National
Associations Representing for Concrete (EFNARC) [61], also detailed in the EN 206 stan-
dard [57]. These classifications provide a clear and quick approach to the fresh performance
of SCC based on an experimental assessment. The classifications for the slump-flow, 3-bar
L-box, and 16-bar J-ring tests are detailed in Table 3.

Table 3. SCC classes according to experimental fresh-state tests.

Test Parameter Class Condition

Slump-flow test
Slump flow

SF1 Slump flow between 550 mm and 650 mm
SF2 Slump flow between 650 mm and 750 mm
SF3 Slump flow between 750 mm and 850 mm

t500 time VS1 t500 time lower than 2 s
VS2 t500 time higher than 2 s

3-bar L-box test Blocking ratio PA2 Blocking ratio in a 3-bar L-box test higher than 0.80

16-bar J-ring test

Slump flow
J-ring SF1 J-ring slump flow between 550 mm and 650 mm
J-ring SF2 J-ring slump flow between 650 mm and 750 mm
J-ring SF3 J-ring slump flow between 750 mm and 850 mm

t500 time J-ring VS1 J-ring t500 time lower than 2 s
J-ring VS2 J-ring t500 time higher than 2 s

Blocking ratio PJ2 Blocking ratio in a 16-bar J-ring test lower than 10 mm

2.4. CFD-Simulation Approach

Once the fresh behavior of SCC containing RCWTB was experimentally characterized,
it was simulated using CFD tools through the results of the slump-flow test with the
objective of deepening the effect of this residue on the viscosity of SCC. It was also sought
to analyze the relationship of viscosity with the passing ability of SCC, measured through
the blocking ratios of the 3-bar L-box and 16-bar J-ring tests. The Bingham equation was
considered for such simulation, which is defined in Equation (1), in which τ is the shear
stress in Pa; τ0 denotes the yield stress in Pa; µ refers to the fluid’s plastic viscosity in Pa·s;
and

.
γ means the shear rate in s−1.{

τ = τ0 +
(
· .
γ
)

τ > τ0.
γ = 0 τ ≤ τ0

(1)

Flow3D® software (v2023R2 version), developed by Flow Science, was the CFD tool
used for the CFD simulations [62]. On the one hand, this software is conceived to simulate
free-surface flows. On the other hand, the TruVOF algorithm with which it works allows
us to model dynamic free surfaces in a very accurate way. Finally, its interface and post-
processing module are simple and intuitive, facilitating data analysis. From all this, this
software perfectly enabled us to address the flow conditions of SCC containing RCWTB.

The slump-flow test was first simulated. For this purpose, the Abrams cone and
the SCC volume were geometrically modeled and imported into the Flow3D® software.
Subsequently, boundary conditions were defined, which consisted of imposing a flow
under the gravity action and establishing the initial motion of lifting the Abrams cone,
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as it defined the beginning of the flow of SCC. Finally, a mesh size of 1/3 mm was
established, since such size enabled us to balance the accuracy of the simulation and the
computational time [63]. Iterative simulations were conducted by fixing values for the
parameters τ0 and µ of the Bingham equation and considering time steps of 0.5 s until
the end of the test, in order not to excessively increase the computational time. Different
values of Bingham’s parameters were considered until the simulation results matched
the experimental ones with a difference lower than 5% on average, in line with previous
studies [64]. The viscosity law (Equation (2); ηav, apparent viscosity in Pa·s) could also
be defined from the Bingham equation.

ηav = µ +

(
τ0
.
γ

)
(2)

L-box and J-ring tests were then simulated using CFD. Following the geometrical
modelling of both the equipment of the tests and the SCC volume, the boundary con-
ditions were fixed. These conditions were the flow under the gravity action and the
motion of opening the L-box gate (3-bar L-box test) or lifting the Abrams cone (16-bar
J-ring test). A mesh size of 1/3 mm and time steps of 0.5 s were also considered, as in
the slump-flow test. The goal was to obtain the error rates of these tests compared to the
experimental results with the aim of assessing the validity of CFD to analyze the passing
ability of SCC with RCWTB.

2.5. Mechanical Properties

To conclude this first approach to the development of SCC with RCWTB, the mechani-
cal properties of the three mixtures were evaluated. Fifteen cylindrical specimens with a
height of 20 cm and a diameter of 10 cm, and three prismatic specimens with a height and
width of 7.5 cm and a length of 27.5 cm were prepared. These specimens were stored in a
humid chamber at a temperature of 20 ± 2 ◦C and a relative humidity of 90 ± 5% until the
age of testing following the EN 12390-2 standard [65]. The tests performed, along with the
standards, the testing age, and the specimens used were as follows:

• Compressive strength (EN 12390-3 [66]) at 7, 28 and 90 days in three cylindrical
specimens per age.

• Elastic modulus (EN 12390-13 [67]) at 28 and 90 days in three cylindrical specimens.
The same specimens were used at both ages.

• Poisson’s coefficient (EN 12390-13 [67]) at 28 and 90 days in three cylindrical specimens
(same specimens as those used for the elastic-modulus test).

• Splitting tensile strength (EN 12390-6 [68]) at 28 days in three cylindrical specimens.
• Flexural strength (EN 12390-5 [69]) at 28 days in three prismatic specimens.

3. Results and Discussion
3.1. Fresh Performance
3.1.1. Slump-Flow Test

The slump flows of the SCC mixes are plotted in Figure 7a, and the t500 times in
Figure 7b. These parameters define the flowability and flow speed of SCC under free flow,
respectively. In slump-flow terms, the RW mix was of SF2 slump-flow class, while the W1.5
and W3.0 mixes were of SF1 class [61]. All the mixes were of VS2 class.

The decreasing slump flow of SCC when adding RCWTB (variations of −14.2% and
−21.3% for the W1.5 and W3.0 mixes, respectively) were because this waste increased the
specific surface area of the SCC components. The GFRP fibers and micro-fibers had a high
surface area [38], as can be noted in Figure 4, while the balsa-wood particles exhibited a
high surface porosity [70]. This phenomena in turn resulted in a reduction of the free water
in the SCC, which increased the internal friction among all their components [14], thus
reducing the ability of the cement paste to drag all of them uniformly. However, it should
be noted that the increased water/cement ratio partially compensated such performance,
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so this negative trend could have been more pronounced if no water compensation had
been conducted [39].
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Figure 7. Experimental results of the slump-flow test: (a) slump flow; (b) t500 time.

The t500 time increased with the addition of RCWTB, although the variation was not as
linear with the RCWTB content as in the case of slump flow. The increase in time between
the RW and W1.5 mixes was only about 0.3 s, while the increase between the reference SCC
mix and W3.0 mix was 2.2 s (31.3% increase). In view of this behavior, it appears that the
negative effect of the addition of 1.5% RCWTB occurred primarily when SCC reached a
high slump flow, since it did not affect the time that SCC took to reach a reduced slump flow
of 500 mm. This behavior has also been found for other alternative raw materials [19,26]
and can be explained by the ability of the cement paste to maintain adequate cohesion
between all SCC components at low slump-flow levels [6]. This was also reflected in the low
sieve-segregation values achieved (EN 12350-11 [71]), less than 4% in all the SCC mixtures
regardless of the RCWTB content.

As a consequence of the slightly different trends shown by both slump flow and t500
time, the two properties did not have a very close linear dependence, as shown in Figure 8.
This indicates that the free flow of SCC containing RCWTB does not occur at a uniform
rate over time, especially when this waste is used at a content of 1.5%.
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3.1.2. 3-Bar L-Box Test

The 3-bar L-box blocking ratio was calculated as the quotient between SCC height
at the end of the horizontal flow area and before the gate when SCC movement finished.
The results obtained are shown in Figure 9. Only the RW mix reached the minimum value
required of 0.80 to establish an L-box class to SCC, so a PA2 class could only be assigned to
this SCC mix [61]. Therefore, it is clear that the RCWTB interfered with the motion of the
other SCC components under such flow conditions [72], even when this residue was added
in small amounts, as the W1.5 mix showed a 3-bar L-box blocking ratio 18.5% lower than
that of the reference mix. When RCWTB was added in a content of 3.0%, the decrease in
the blocking ratio increased to 42.9%.
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It follows from these results that the impact of RCWTB on the L-box passing ability of
SCC was much more noticeable and negative than in terms of free flow (Figure 7), which
is thought to be primarily because of the effect of the GFRP fibers. As other types of
commercial fibers in SCC, they were trapped between the bars that simulate the concrete
reinforcement [28,46]. Therefore, fibers generally require a denser cement paste in SCC to
be able to successfully drag them through the bars of the testing apparatus.

3.1.3. 16-Bar J-Ring Test

The values of the slump flow, t500 time, and blocking ratio, obtained in the 16-bar
J-ring test, are shown in Figure 10.

The results regarding slump flow (Figure 10a) and t500 time (Figure 10b) were affected
by the presence of obstacles simulating concrete reinforcement, which hindered SCC
flow [4]. Therefore, slump flows obtained in this test were lower than in the slump-flow
test. Furthermore, only the RW and W1.5 mixes were of J-ring SF1 class, as the W3.0 mix
did not reach the minimum required value of 550 mm [61]. Similarly, the t500 times were
higher than in the slump-flow test, with all mixes being J-ring VS2 class. On the other
hand, the results of the 16-bar J-ring test corroborated the trends regarding the effect of
increasing the amount of RCWTB in SCC found in the slump-flow test. An amount of 1.5%
RCWTB caused a notable decrease in the slump flow (14.4% loss), while the increase in
the t500 time that it caused was only 3.4%. These percentage variations for the W3.0 mix
were 21.6% and 30.9%, respectively. Therefore, the reduction in the free water [46] and
the subsequent increase in the internal friction between the SCC components [14] due to
the addition of low RCWTB content only notably affected the free flow of the mixtures
when high slump-flow values were reached, even despite the presence of bars simulating
concrete reinforcement, such as in the J-ring test.
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The J-ring blocking ratio (Figure 10c) was measured as the difference in SCC height
between the center and the outside of the ring when SCC movement ended [61]. This value
remained approximately constant among the three SCC mixtures, with results between
32.5 mm (W3.0 mix) and 37.0 mm (W1.5 mix). RCWTB did not impact SCC passing ability
under free flow, as it is thought that the cement paste could successfully drag the GFRP
fibers through the bars of the J-ring. Other research has also reported such phenomena
regarding different types of fibers [28,72].

The relationships between the different results of the 16-bar J-ring test corroborated all
the aspects mentioned above, as can be seen in Figure 11. No precise linear relationship
was detected between the t500 time and the slump flow, as regarding the slump-flow test
(Figure 8). Similarly, the blocking ratio did not show a clear dependence with the other
two properties, although this relationship was slightly more precise with the t500 time.

3.1.4. Inter-Test Relationships

Figure 12 details the inter-relationships (linear simple regressions) between the results
obtained in the different fresh tests. It can be appreciated that slump flows and t500 times
obtained in the slump-flow and 16-bar J-ring tests showed proportional values, indicating
that the free-flow results of SCC containing RCWTB exhibited the same trends with and
without the presence of obstacles. However, the trend of the blocking ratios depended on
whether SCC flowed in an imposed direction (3-bar L-box test) or whether it flowed under
free-flow conditions (16-bar J-ring test). Therefore, a non-precise relationship between them
was detected (Figure 12c). It is suggested that the cement paste was able to drag them more
easily and successfully under free-flow conditions, which are generally the most favorable
for SCC movement [42,73].
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3.1.5. Statistical Validation

To conclude the evaluation of the experimental results related to the fresh behavior of
SCC containing RCWTB, two statistical analyses were performed. On the one hand, the
significance of the factor “RCWTB content” was analyzed for all the properties by means of
a one-way analysis of variance (ANOVA) at a significance level of 5%. On the other hand,
both linear (Pearson) and monotonic (Spearman) correlations between the RCWTB content
and all the fresh properties were determined. All these analyses are common in concrete
science [74,75]. The results obtained are shown in Table 4.

Table 4. p-Values for the one-way ANOVA and correlations of the experimental fresh results.

Test Parameter p-Value Pearson’s Correlation Spearman’s Correlation

Slump-flow test Slump flow 0.0010 −0.98 −0.95
t500 time 0.0005 +0.92 +0.96

3-bar L-box test Blocking ratio 0.0001 −1.00 −0.98

16-bar J-ring test
Slump flow 0.0009 −0.98 −0.96

t500 time 0.0005 +0.91 +0.93
Blocking ratio 0.0603 −0.46 −0.48
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The RCWTB content significantly affected all the fresh-SCC properties, as p-values
markedly lower than 0.05 were obtained [74]. The only exception was the blocking ratio
of the 16-bar J-ring test, as the content of this waste did not significantly affect it. The
correlations were consistent with the findings of the one-way ANOVA, the RCWTB content
having a close relationship with all properties since the absolute values of the correlations
were greater than 0.90. The exception once again was the blocking ratio obtained in the
16-bar J-ring test. The correlations also showed that all properties decreased with the
RCWTB amount (negative sign), except for the t500 time, which increased (positive sign).

3.2. CFD Simulations
3.2.1. Adjustment of Bingham Equation Through the Slump-Flow Test

The values of the Bingham parameters τ0 and µ were obtained through iterative
simulations based on the experimental results of the slump-flow test, as shown in Figure 13.
In each iteration, a different value of both parameters was assigned until the results of the
simulation of the slump-flow test coincided with those experimentally obtained. The initial
values for the iterations were defined according to similar research [46,50,63,64].
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Figure 13. Example of the simulation of the slump-flow test in the RW mix.

The values obtained for both parameters yield stress and plastic viscosity, allowed
for defining by the Bingham equation (Equation (1)) for each SCC mixture, as shown in
Figure 14a. Such parameters also allowed for defining the viscosity law of each SCC mix
(Equation (2)), which are detailed in Figure 14b. Two aspects can be highlighted from the
results achieved through CFD simulations:

• The addition of RCWTB did not affect yield stress (Figure 14a), with all SCC mixes
showing a similar value around 120 Pa. Therefore, SCC with contents of this waste
up to 3.0% started to freely flow at the same shear stress. This could be expected
in view of the t500-time results obtained in the slump-flow and 16-bar J-ring tests,
where 1.5% RCWTB did not affect the free flow of SCC at low slump-flow levels
(Figures 7b and 10b). This means that the start of SCC free flow always happened
under the same initial conditions (yield stress) regardless of the RCWTB content [63].

• However, RCWTB did noticeably affect the value of the SCC plastic viscosity
(Figure 14a). The addition of 1.5% RCWTB increased the viscosity by around
3.5 times (116 Pa·s vs. 429 Pa·s), although higher waste amounts did not result in
such a large increase, as the viscosity of the W3.0 mix was 517 Pa·s. The GFRP
fibers exhibited a hard movement against shear stresses and also increased the
solid concentration within SCC, which hindered the flow of the aggregate particles
progressively as the slump flow of the SCC increased [9,28]. The same phenomena
have been found when adding other fiber types to SCC, their long-term effect being
more negative than that at the beginning of the free flow [72]. These effects also
caused the stabilization of the apparent viscosity to occur at lower shear rates, as
can be noted in Figure 14b.
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Figure 15 shows the relationship based on simple linear regression between the plastic
viscosity obtained from CFD simulations and the results of the slump-flow test. It can
be seen that the viscosity exhibited a very close relationship with the slump flow, while
the relationship with the t500 time had a much lower R2 coefficient. These statistical
relationships support the aspects discussed above. The plastic viscosity conditioned the
free-flow behavior of SCC containing RCWTB in the long term, allowing to accurately
explain the value of the slump flow, measured when SCC movement ended. However, it
was not as successful in explaining the behavior of SCC with RCWTB at the beginning of
the free flow, when the negative effect of RCWTB was less noticeable.
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3.2.2. Simulation of the 3-Bar L-Box Test

Once adjusted using the Bingham equation (Figure 14), the L-box test was simulated,
as shown in Figure 16. The error rates for the blocking ratio derived from this test are listed
in Table 5.

Table 5. Error rates from the CFD simulation of the blocking ratio from the 3-bar L-box test.

Mix Error Rate (%)

RW 20.5
W1.5 48.2
W3.0 107.4
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Figure 16. Example of the simulation of the 3-bar L-box test in the W1.5 mix.

The CFD simulations adjusted the blocking ratio from the 3-bar L-box test more
accurately the lower the content of RCWTB and, therefore, of the GFRP fibers in SCC. Thus,
the error rate went from 20.5% in the RW mix to 107.4% in the W3.0 mix. CFD simulations
always obtained higher blocking ratios than the experimental ones and, therefore, a better
SCC flow under these conditions. This behavior could be due to the fact that the CFD
simulations did not allow for introducing the individual effect of the GFRP fibers [63],
which are thought to be partially retained in the bars simulating concrete reinforcement,
which hindered the SCC flow. The plastic viscosity did not show a poor relationship with
the experimental results of the 3-bar L-box blocking ratio, as can be seen in Figure 17.
Therefore, it is considered that the Bingham parameters obtained were also in agreement
with the results of the 3-bar L-box test, although the simulation of the individual effect of
the GFRP fibers would provide greater accuracy [48]. On the other hand, the use of smaller
meshes could also improve the simulation accuracy [46].
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for the W3.0 mix were 22.8% and 32.7%, respectively. Nevertheless, these values were 
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3.2.3. Simulation of the 16-Bar J-Ring Test

The 16-bar J-ring test was also simulated through CFD tools by considering the
parameters of the Bingham equation obtained from the results of the slump-flow test
(Figure 14), as shown in Figure 18. The error rates for the different results of the tests are
listed in Table 6.

Table 6. Error rates (%) of the CFD simulation of the 16-bar J-ring test.

Mix Slump Flow t500 Time Blocking Ratio

RW 5.1 10.5 55.2
W1.5 12.7 14.5 72.1
W3.0 22.8 32.7 62.1
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Figure 18. Example of the simulation of the J-ring test in the W3.0 mix.

The results obtained in this test were modeled with varying accuracy by means of CFD
tools. Thus, two different groups could be distinguished depending on the fitting quality:

• On the one hand, there are slump flow and t500 time. The error rate for these results
was higher with the RCWTB content. For example, the error rate of the 16-bar J-ring
slump flow was 5.1% of the RW mixture and 10.5% for its t500 time, while these values
for the W3.0 mix were 22.8% and 32.7%, respectively. Nevertheless, these values were
always within adequate limits according to the indications of other studies available in
the scientific literature [63,64], thus validating the adjustment of the Bingham equation
conducted and the CFD model developed through the results of the slump-flow
test. As for the slump-flow test (Figure 15), a more precise relationship of the plastic
viscosity with the slump flow (Figure 19a) than with the t500 time (Figure 19b) was
found. The plastic viscosity thus enabled us to explain and successfully simulate the
free flow of SCC containing RCWTB in the long term regardless of the presence of
obstacles simulating concrete reinforcements, which is in line with the trends found in
other studies [46].

• On the other hand, the error rates obtained for the blocking ratio were high, in all cases
greater than 55%. No clear trend with the RCWTB amount was found, nor a precise
relationship with the plastic viscosity (Figure 19c). This property did not depend
on the Bingham parameters, and the GFRP fibers may have a much more noticeable
influence that could be further explored by other simulation approaches [48] or by
considering meshes of lower size [46].
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3.2.4. Statistical Validation

As for the experimental results in the fresh state, the impact of the RCWTB content
on the parameters of the Bingham model, yield stress, and plastic viscosity was validated
through a one-way ANOVA at a 5% significance level and by calculating Pearson’s and
Spearman’s correlations. The results obtained are detailed in Table 7. These results show
that the RCWTB content did not affect the yield stress of SCC, which resulted in very low
correlations. However, the plastic viscosity was significantly affected by the content of this
residue in SCC, which led to high correlation values, especially in linear terms.

Table 7. p-Values for the one-way ANOVA and correlations of the CFD simulations.

Parameter p-Value Pearson’s Correlation Spearman’s Correlation

Yield stress 0.0789 −0.51 −0.54
Plastic viscosity 0.0111 +0.93 +0.84

3.3. Mechanical Properties
3.3.1. Experimental Results

The values of the mechanical properties are plotted in Figure 20. The compression-
related properties were determined at early ages and advanced ages apart from at 28 days.
Splitting tensile and flexural strengths were also measured at 28 days.

The trends displayed by all the mechanical properties with the content of RCWTB were
similar except for Poisson’s coefficient. Therefore, all of them decreased in an approximately
linear way as the RCWTB amount increased. This performance is thought to be due to two
aspects. First, the weak particles of polymers and balsa wood that were introduced within
the SCC when RCWTB was used as a raw material. They created interfacial transition zones
with low levels of adhesion to the cementitious matrix, which could have caused these
particles to slide when loading, as found for other concrete types [76]. Furthermore, they
could easily break when applying the load in those cases in which they exhibited a better
adhesion to the cementitious matrix [56,70]. Second, the large increase in the water/cement
ratio as the RCWTB content was augmented to preserve self-compactability in terms of free
flow without obstacles [11]. These trends were not affected by age, as the 7-day compressive
strength and compression-related mechanical properties at 90 days exhibited equivalent
trends. These aspects caused the W3.0 mix not to show mechanical properties with values
suitable for use in structural applications [77].

GFRP fibers show optimal adhesion to the cementitious matrix due to the wedge effect
created between the matrix and the fiberglass in the interfacial transition zone, which causes
the cementitious matrix to break instead of slipping [76]. Nevertheless, the stitching effect of
the GFRP fibers was largely counterbalanced by the two aspects mentioned in the previous
paragraph. Thus, these fibers did not contribute to the improvement of the mechanical
properties of SCC, unlike what was found in conventional-workability concrete [41]. Only
Poisson’s coefficient was positively affected by them, since their stitching effect limited the
transverse deformability [39], causing this property to remain constant for all SCC mixes
regardless of the RCWTB content.

From the results of these mechanical properties, it can be concluded that it is necessary
to develop an SCC design specifically aimed not only to achieve self-compacting properties
when RCWTB is added, but to ensure that adequate mechanical behavior is achieved. The
study of varying the content of superplasticizers [78], the use of filler to improve the density
of the fresh cement paste and the mechanical strength when hardened [5], and the analysis
of other possible ways of adding RCWTB as, for instance, an aggregate replacement [34],
are strategies that can be applied in future research. Another possibility would be to obtain
higher quality GFRP fibers as in other studies in the literature [39], or that those fibers were
not mixed with weak particles of balsa wood and polymers. This may enable the addition
of waste from wind-turbine blades to SCC to yield a better mechanical performance.
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3.3.2. Statistical Validation

The significance of the RCWTB content on the mechanical properties of SCC was
verified in the same way as in the previous cases, through a one-way ANOVA with a
significance level of 5%, and by calculating the correlations between the content of this
residue and the values of the mechanical properties. As shown in Table 8, the effect
of RCWTB was significant in all mechanical properties except Poisson’s coefficient. In
fact, negative correlations of high absolute value were obtained in all these cases, both
linear (Pearson) and monotonic (Spearman), which confirmed the negative relevance of
the amount of RCWTB in the results of the mechanical properties [75]. As expected, the
correlations for Poisson’s coefficient had very low absolute values.
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Table 8. p-Values for the one-way ANOVA and correlations of the mechanical properties.

Property Age (Days) p-Value Pearson’s Correlation Spearman’s Correlation

Compressive strength
7 0.0030 −0.92 −0.95
28 0.0005 −0.95 −0.95
90 0.0000 −0.97 −0.95

Modulus of elasticity 28 0.0000 −0.96 −0.95
90 0.0000 −0.94 −0.95

Poisson’s coefficient
28 0.0865 +0.05 +0.05
90 0.6696 −0.34 −0.51

Splitting tensile strength 28 0.0404 −0.77 −0.74
Flexural strength 28 0.0009 −0.95 −0.95

4. Conclusions

The crushing of wind-turbine blades to produce raw-crushed wind-turbine blade
(RCWTB) and its addition to self-compacting concrete (SCC) is a possible way to re-
cycle these wind-turbine components. This contributes to the circular economy in the
wind sector and to the revaluation of material that currently has no added value. This
paper has presented a first approach for the use of RCWTB as a raw material in SCC
production following a conventional design. These conclusions can be drawn from all
the aspects discussed:

• RCWTB decreased the flowability of the SCC under free-flow conditions, reducing
slump flow and increasing t500 time. This behavior was independent of the presence
(16-bar J-ring test) or not (slump-flow test) of obstacles simulating concrete reinforce-
ment. An amount of 1.5% RCWTB content yielded SCC with proper fresh behavior
under free flow, while an amount of 3.0% RCWTB was excessive to obtain SCC with
proper flowability in the 16-bar J-ring test.

• The passing ability of SCC was affected differently by RCWTB depending on the type
of flow imposed. Thus, this property was not affected under free-flow conditions
(16-bar J-ring test). However, any RCWTB content led to a very noticeable decrease
of the blocking ratio when flow was imposed in a specific direction (3-bar L-box test).
It is thought that the fibers of glass fiber-reinforced polymer (GFRP) present in this
waste may have been retained by the bars simulating concrete reinforcement in this
test, hindering the passage of SCC.

• Obtaining the Bingham parameters based on the results of the slump-flow test by
computational fluid dynamics (CFD) simulations showed that RCWTB did not affect
the yield stress of SCC, but it did significantly increase the plastic viscosity. Thus, SCC
started to flow freely under the same shear stress regardless of the waste content, but
RCWTB did slow down the flow, especially in the long term.

• The CFD simulation based on the Bingham model was valid for free flow, both with
and without obstacles simulating concrete reinforcement, obtaining valid differences
with the experimental results. This simulation was more suitable for long-term flow,
since slump flow was always simulated more accurately than t500 time.

• CFD tools did not allow accurate modeling of the passing ability of SCC, although the
plastic viscosity obtained did exhibit a good relationship with the 3-bar L-box blocking
ratio. Modeling the effect of the GFRP fibers on SCC flow could improve the accuracy
of the simulation.

• The addition of RCWTB worsened all mechanical properties due to the presence of
polymer and balsa-wood particles and to the increase of the water/cement ratio with
increasing contents of this waste. Moreover, these aspects offset the beneficial effect of
stitching the GFRP fibers, which was only relevant in terms of Poisson’s coefficient,
which remained constant for all RCWTB content. The mix with 3.0% RCWTB did not
exhibit adequate mechanical properties for use in structural elements.
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From all the aspects analyzed, it can be concluded that it is possible to develop
SCC through the addition of RCWTB that exhibits adequate free-flow behavior, both in
experimental and CFD-simulation terms. The direct comparison of experimental results
with CFD-simulation outputs could be addressed in future research. Despite this, it is also
true that a conventional SCC design is not suitable. It is therefore necessary to develop a
specific dosage for SCC incorporating this residue, so that high content of this waste can be
added without reducing so notably the passing ability and mechanical properties of SCC.
This is an aspect that could be addressed in future research, as well as the use of GFRP
fibers of higher quality to produce SCC.
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