
Chemometrics and Intelligent Laboratory Systems 246 (2024) 105092

Available online 20 February 2024
0169-7439/© 2024 The Authors. Published by Elsevier B.V. This is an open access article under the CC BY-NC license (http://creativecommons.org/licenses/by-
nc/4.0/).

PLS class modelling using error correction output code matrices, entropy 
and NIR spectroscopy to detect deficiencies in pastry doughs 

D. Castro-Reigía a,b, M.C. Ortiz a,*, S. Sanllorente a, I. García b, L.A. Sarabia c 

a Departamento de Química, Facultad de Ciencias, Universidad de Burgos, Plaza Misael Bañuelos s/n, Burgos, 09001, Spain 
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A B S T R A C T   

Biscuits are a highly demanded product worldwide. Its success makes their manufacture process a challenging 
task, needing new strategies to maintain the high production levels and a high-quality standard. This is deter
mined by two key processes: the kneading and the rolling. This manuscript aims to reflect the improvements that 
the application of a novel soft multiclass compliant classification method (PLS2-CM) entails regarding the 
traditional chemometric class modelling. With this new approach, the intention is to detect possible deficiencies 
in biscuit doughs (excess of water, lack of water or little kneading time) during both industrial processes by using 
NIR spectroscopy. 

In PLS2-CM, the coding of the classes is done using an Error Correcting Code Matrix (ECOC), which implies to 
employ several binary learners so that their number and structure are not predetermined beforehand but are 
function of the data set to be modelled. The optimization criterion in PLS2-CM is the sensitivity and specificity 
matrix evaluated by the Diagonal Modified Confusion Entropy (DMCEN), a new index inspired by the Shannon’s 
entropy that is more sensitive to changes in the elements of that matrix than the usual total efficiency. The results 
obtained according to this index are better with this new soft classification method than the ones obtained when 
using other soft class modelling techniques such as soft independent modelling of class analogy (SIMCA) or 
unequal dispersed classes (UNEQ). 

In this work it is shown that it is possible to completely distinguish a correct kneaded dough from another 
defective one with a specificity equal to 1 during the kneading process, but the class corresponding with water 
deficit dough, accepts a very high percentage (80 % in training and 92 % in prediction) of the excess-water dough 
spectra. Despite that, after the fermentation and during the rolling process, the same doughs are modelled with 
complete sensitivity and specificity in prediction (100 %), which indicates that the physico-chemical changes 
produced during the fermentation are decisive to characterize the absence of defects in biscuit doughs kneading 
by NIR spectroscopy.   

1. Introduction 

Biscuits consumption all over the globe is elevated. In fact, global 
snacks consumption increased in more than 2.5 million tons in the past 
two years, reaching almost 65 million in 2021 and reporting sales of 
474,000 million dollars worldwide [1]. With these production levels, it 
is clear that controlling the production processes of this food to assess 
the quality of the final product is truly important. 

One of the key aspects in the manufacture of these highly consumed 
snacks, are the kneading, fermentation and rolling processes, since they 
are the ones that influence the most the quality of the final product. As a 

crucial control step of these manufacture processes, an expert in the food 
sector is always demanded to assess the appropriateness of the biscuit 
doughs in each stage. Nevertheless, new computational methods and 
machine learning techniques are being improved or developed in pastry 
and bakery sectors in order to enhance their industrial control of pro
cesses [2–4]. In that sense, the advances of the in situ methods stand out 
for its great interest in the last few years, and therefore, so does near 
infrared (NIR) spectroscopy, since it has been proven to be one of the 
most efficient and versatile techniques in the in-line processes for this 
type of analysis [5,6]. The flexibility of NIR spectroscopy in the food 
industry to evaluate the quality of raw materials and the final products is 

* Corresponding author. 
E-mail address: mcortiz@ubu.es (M.C. Ortiz).  

Contents lists available at ScienceDirect 

Chemometrics and Intelligent Laboratory Systems 

journal homepage: www.elsevier.com/locate/chemometrics 

https://doi.org/10.1016/j.chemolab.2024.105092 
Received 29 November 2023; Received in revised form 9 February 2024; Accepted 19 February 2024   

mailto:mcortiz@ubu.es
www.sciencedirect.com/science/journal/01697439
https://www.elsevier.com/locate/chemometrics
https://doi.org/10.1016/j.chemolab.2024.105092
https://doi.org/10.1016/j.chemolab.2024.105092
https://doi.org/10.1016/j.chemolab.2024.105092
http://crossmark.crossref.org/dialog/?doi=10.1016/j.chemolab.2024.105092&domain=pdf
http://creativecommons.org/licenses/by-nc/4.0/
http://creativecommons.org/licenses/by-nc/4.0/


Chemometrics and Intelligent Laboratory Systems 246 (2024) 105092

2

widely recognized for being a fast and non-destructive technique, and 
with no sample preparation, what makes it increasingly demanded by 
the food industry. Quality control in bakery and pastry industries using 
NIR is usually based either in the nutritional characteristics and/or 
physicochemical parameters determination of the food products [7–9], 
or in food manufacturing process monitoring that outline some of those 
characteristics and the quality of the final product [3,10]. However, the 
use of classification algorithms has also gained relevance lately [2]. 

The purpose of the present study is to show the feasibility of 
detecting possible deficiencies in the kneading and rolling processes 
through NIR spectroscopy reproducing the expertise of a professional in 
the industrial sector. It is aimed to monitor the correct manufacture of 
biscuit doughs during two different elemental processes: the kneading 
and the rolling processes, having the objective that there is not a person 
continually supervising them. In order to do that, the intention is to 
detect if the dough is correct, if it has an excess or lack of water, or 
whether it needs more kneading time during these industrial operations. 

It was decided to monitor those processes by detecting these de
ficiencies given that rheological tests have quite a few shortcomings. The 
evaluation of dough quality is mainly based on rheological properties, 
whereas the quality of the final product usually relays in the specific 
volume and texture [10]. Nevertheless, rheological methods are 
unavoidably influenced by the bakeries and the operating conditions, 
having as a result the possibility of not adequately predicting the quality 
of the food. Furthermore, all the trials involved require large amounts of 
resources and are also affected by expert judgements (based on subjec
tive evaluations) [10,11]. In addition, detecting errors in the amount of 
water or the little kneading time is essential, and it is a logical reasoning 
because, on the one hand, the correct amount of water allows the flour 
components to hydrate and the semicrystalline polymers (starch) to 
achieve glass transition going from a glassy to a rubbery state [10–12]. 
On the other hand, the contribution of mechanical energy during 
kneading and rolling processes results in the progressive growth of the 
gluten netting since it causes new synergies between the gluten proteins 
through disulphide bonds. Despite that, if that energy is not adequate, 
protein depolymerization occurs [10,12,13]. For all that, it has been 
considered a good choice to monitor the ideality of the biscuit doughs by 
detecting these possible defects with NIR spectroscopy together with a 
class modelling algorithm. 

Additional to study the suitability of biscuit doughs by this approach, 
in order to detect the possible aforementioned defects an efficient and 
innovative soft multiclass compliant classification method (PLS2-CM) 
was used, that for a k-class model, k = 4 in this case, it allows each 
spectrum to be assigned to one, several, or none of them, avoiding the 
lack of flexibility of a classifier, such as Partial Least Squares- 
Discriminant Analysis (PLS-DA) or Support Vector Machine (SVM), 
which necessarily assign each one of all objects to one class. Recently it 
has been generalized the two-class class modelling using a PLS regres
sion (PLS-CM) [14–18], into a k-classes case (PLS2-CM) [19] considering 
the ECOC codification of the responses and using DMCEN [20] to 
evaluate its performance, that in this work was better than the one ob
tained when using SIMCA or UNEQ. 

Thanks to this new soft multiclass compliant classification method, it 
is possible to determine that, correctly kneaded doughs can go to the 
fermentation chamber, and those whose kneading time is not enough, 
can be kneaded for a longer time to correct that deficiency (still recti
fiable before fermentation). On the other hand, after fermentation, the 
rolling process will automatically differentiate all possible defects in the 
doughs, being able to solve in this case, the problems with the amount of 
water. If the dough had excessive water, the defect would be compen
sated by adding more flour, while if it had a lack of water, it would be 
discarded so to be reused and corrected in a second kneading process 
(preventing defective doughs from being moulded and baked, with all 
the savings that this entails). 

2. Materials and methods 

2.1. NIR spectroscopy. Spectrophotometer configuration and 
measurements 

The experiments were carried out in an industry of the bakery sector 
in Spain, in Lugar da Veiga S.L.L [21]. 

As introduced in the previous section, two processes have been 
monitored with the objective that there is no need for a qualified person 
to continually supervise those processes. 

The kneading process is characterized by the mixing of all the in
gredients that make up the final product, until they reach the most ho
mogeneous dough possible. Rigorously, dough kneading refers to the 
subsequent development of the gluten network [22]. In that sense, NIR 
spectra were collected from the beginning (from the mixture of in
gredients) until attain the final dough. After the kneading, the doughs 
were fermented for 1 h and were then laminated in order to moulding 
them into a biscuit shape. 

The measurements were carried out in-line to explore better the 
possible variations in the manufacture processes of the biscuits. The 
experimental procedure was made with the AONIR (AOTECH S.L [23]) 
integrated solution for real-time NIR measurements, including a NIR 
sensor, a measurement platform, and the precise software to integrate 
the hardware with the chemometric model outcome for real-time 
monitoring and control of the kneading and rolling processes. The 
spectra were recorded throughout the entire kneading industrial process 
of the biscuit doughs in a kneader and in an industrial dough roller for 
the rolling process, what implied 30 kg of dough per class. The spec
trometer was configured automatically so that NIR reflectance was 
measured in a wavelength range from 900 to 1670 nm (125 wave
lengths, accounting for a spectral resolution of 6 nm), with 50 scans per 
spectrum with an integration time of 10.8 ms and taking one spectrum 
every 10 s. Simultaneously, a pastry expert was aware of the evolution of 
both processes to ensure the reference status of the biscuit doughs. To 
study the possible defects, not only a correct dough was monitored 
(Class 1, correct doughs), but other three doughs corresponding to the 
three types of defects mentioned in the introduction section (Class 2, 
dough with excess of water; Class 3, dough with lack of water; and Class 
4, dough with little kneading time). In that sense, the recorded spectra 
for the four doughs (four classes) were 576 during the kneading process 
and 431 during the rolling process (corresponding to the same biscuit 
doughs). The different number of spectra is due to the fact that the 
rolling process is shorter than the kneading process. The spectra distri
bution for each class is shown in Table 1. 

2.2. NIR signals and spectral preprocessing 

Just as mentioned beforehand, NIR spectra were registered during 
the kneading process in four different scenarios that conform the classes 
to be modelled. Fig. S1 in the supplementary material shows the 

Table 1 
Number of spectra per class, registered during the kneading and rolling 
processes.   

Classes 

Class 1 Class 2 Class 3 Class 4 

Kneading process 
Number of spectra 129 128 154 165 
Training 90 90 108 116 
Validation 39 38 46 49 

Rolling process 
Number of spectra 126 126 110 119 
Training 88 88 77 83 
Validation 38 38 33 36 

Abbreviations: Class 1, correct dough. Class 2, dough with excess of water. Class 
3, dough with lack of water. Class 4 dough with little kneading time. 

D. Castro-Reigía et al.                                                                                                                                                                                                                         



Chemometrics and Intelligent Laboratory Systems 246 (2024) 105092

3

representation of these spectra for each class, while Fig. 1 shows these 
same spectra, but preprocessed. It can be observed that, apparently, the 
shape of the spectra is quite similar during the kneading. The majority 
components of the doughs are water and flour, which contains high 
amounts of carbohydrates [13], and for that reason, the most remark
able band is the one between 1400 and 1500 nm in the raw spectra (in 
the four possible situations during the kneading process) possibly 
related to the first overtone of the symmetric and asymmetric vibration 
stretch of the water molecule and the second overtone of the O–H bond 
of sugars, but it also can be associated with the presence of proteins 
(stretching vibration of the first overtone of the N–H bond). It can also be 
observed two bands at approximately 980 and 1200 nm, related with the 
O–H bond of sugars, the C–H of carbohydrates, and the bending mode, 
and the asymmetric stretch of the water molecule [24]. 

On the other hand, in Fig. S2 in the supplementary material can be 
found the recorded spectra during the rolling process, and in Fig. S3, the 
corresponding preprocessed ones. 

By comparing Fig. S1 and Fig. S2 in the supplementary material, it is 
shown how both the physical appearance of the doughs and the physico- 
chemical changes occurred during the fermentation process influence 
the NIR spectra. In the course of fermentation, yeasts take up nutrients 
for growth in the biscuits doughs (mainly carbohydrates), and its 
metabolism results in the evolution of glucose and the formation of 
carbon dioxide to leaven the doughs [25]. 

Smoothing, baseline corrections, and scatter corrections used to 
correct artefacts in analytical signals, depend strongly on the data [26] 

and the purpose of the analysis and can be applied in any order [27,28]. 
Reference [29] shows the pretreatment combination that optimizes the 
residual sum of squares in a PLS calibration model is different from the 
one that optimizes the figures of merit of the analytical method. In this 
latter case, the optimum is obtained by applying first Savitzky-Golay 
(SG) and after, standard normal variate (SNV). This same pretreat
ment (SG + SNV) has been also optimum in Ref. [30] and for NIR signals 
obtained with AONIR and a similar data matrix that the one in this 
manuscript when PLS-DA is applied [2]. As a consequence, both for 
kneading and rolling processes, NIR spectra were pre-processed by 
applying Savitzky-Golay procedure with a window width of 15 points 
using a second-degree polynomial and a second derivative, and after
wards by standard normal variate (SNV) in order to baseline corrections 
and resolution enhancement. 

2.3. Sample distribution in training and in validation 

Regarding the capability of prediction of a class model, cross
validation (CV) or a validation set (VS) are commonly used to evaluate 
it. Despite its popularity, CV has been criticized [31] and recently, has 
been theoretically demonstrated that it is not the correct way to evaluate 
the capability of prediction [32]. Therefore, in this work, both for the 
kneading and rolling processes, the NIR spectra of each one of the four 
classes were split in two subsets: training and prediction. In both cases, 
the 70 % of the spectra of each class were assigned to the training set and 
the remaining 30 % to the validation one, using the Kennard Stone 

Fig. 1. NIR spectra recorded during the kneading process preprocessed by Savitzky-Golay and SNV for each class. a) Class 1: correct dough (in red), b) Class 2: dough 
with an excess of water (in green), c) Class 3: dough with deficit of water (in blue), and d) Class 4: dough with little kneading time (in cyan). In grey are represented 
all the remaining spectra corresponding to the other 3 classes. (For interpretation of the references to colour in this figure legend, the reader is referred to the Web 
version of this article.) 
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method [33] for the selection, as previously shown in Table 1. 

2.4. PLS2-CM 

PLS2-CM is very versatile, and it adapts to the characteristics of each 
data set thanks to its coding and decoding of classes. The structure that 
this method follows can be summarized in the following steps. 

Step 1. The codification of classes is done by applying to the label 
vector of the objects an Error Correcting Code matrix (ECOC). This 
codification is not fixed beforehand but is part of the method opti
mization, which leads to select the most appropriate one for the 
current data. 
Step 2. Through PLS2 a regression model between the NIR spectrum 
and the code of class of each object is obtained. PLS2 can manage the 
lack of orthogonality of the codified responses by means of an ECOC 
matrix. 
Step 3. The decoding is made using critical values at a confidence 
level established a priori and without using any probability distri
bution predefined for the predicted values via PLS2. Also, critical Q 
and T2 statistics values are employed to define if the model is valid to 
apply the PLS2 regression to a new spectrum. 
Step 4. Each sample is assigned to the class whose code matches with 
the code that class has in the ECOC matrix. 
Step 5. The optimization criterion is the sensitivity and specificity 
matrix evaluated by the Diagonal Modified Confusion Entropy 
(DMCEN) [20], a new index that is more sensitive to changes in the 
elements of that matrix than the usual efficiency. 

The details of the previous steps can be consulted in Ref. [19], but a 
description will be made below, applying it to the case of kneading data 
to ease its reading and the interpretation of the results. 

According to Table 1, the NIR spectra of the kneading process that 
were assigned to the training set form a matrix XT404x125, whereas the 
validation ones, form the XV172x125 matrix. There are also two column 
vectors corresponding to the labels of the objects from the training and 
validation sets, respectively, LT404x1 and LV172x1. The labels, belong to 
the {1, 2, 3, 4} set, and they denote the class to which each object be
longs according to the notation in Table 2. So, the five steps to be applied 
to the kneading process go as follows. 

2.4.1. Step 1 for the PLS2-CM 
The codification ECOC matrix is a Mkxc = (mij) matrix with mij ∈

{− 1,1} being k the number of classes (in this case, four), and c the length 
of the codeword. Each row of the ECOC matrix is the codeword of the 
class and each column is a binary learner. The ECOC matrices come from 
problems in the communication engineering, but their use in multiclass 
classification problems has gained importance since the pioneering 
study made by Dietterich in 1995 [34]. 

Table 2 shows an example of this type of matrix for k = 4 and c = 5. In 
it, the class of doughs with lack of water is codified by the (− 1, − 1, 1, 
− 1, 1) vector, corresponding with each binary learner values for dough 
spectra with lack of water. From now on this ECOC matrix will be used 
for the description of the different steps of the PLS2-CM procedure. 

From the vector of labels LT404x1, the row vector that corresponds to 
its class is assigned to the i-th object, for instance, if LT(i) = 3, then, the 
vector YT(i) = (− 1, − 1, 1, − 1, 1) will be assigned to the i-th object. In 
this way, a YT404x5 matrix is built with the code assigned to each class 
and which is the response matrix associated with the NIR spectra matrix, 
XT404x125. Each column of YT are the values of one “binary learner”. 
That is, they are the values of a binary function that models two A and B 

superclasses. As an example, in the f2 case, A is composed by classes 1 
and 4 (correct dough, and dough with little kneading time, respectively) 
when B is formed by classes 2 and 3 (dough with excess of water and 
with lack of water, respectively). However, f1, models the class of correct 
doughs versus the union of the other three remaining classes. 

Some additional information about how to build and work with 
ECOC matrices can be consulted in Ref. [19] and in the supplementary 
material (Section 4.2.1). 

2.4.2. Step 2 for the PLS2-CM 
With the XT404x125 and YT404x5 autoscaled matrices, a PLS2 regres

sion model is built [35], varying the number of LV from 3 to 9. 
As is known, the PLS2 regression model is a compromise between 

variances and correlation, which is obtained by maximising a geometric 
mean or, equivalently, their product, Eq. (1) 

max(r,q)
{

var(XTr)[corr(XTr,YTq) ]2var(YTq)
}

subject to ‖r‖ = ‖q‖ = 1
(1)  

where r and q are the vectors that define a linear combination both for 
predictor and response variables respectively. The maximisation of the 
product var(XTr)[corr(XTr,YTq)]2 var(YTq) tends to look for directions 
with large variance in NIR spectra, XT, and also in its codification YT, 
avoiding those with small variance or little correlation with each other. 
This PLS2 structure adapts the regression both to the class of the spectra 
and to each ECOC matrix. 

Together with the PLS2 model, the critical values T2
crit and Qcrit are 

available for the T2 and Q statistics at the confidence level that is 
desired. With them, the PLSBOX is defined by Eq. (2)  

PLSBOX = {x | T2 (x) < T2
crit} 

⋃
{x |Q(x) < Qcrit}                               (2) 

being x a NIR spectrum from XT matrix in training, or from the XV 
matrix in validation. A more restrictive PLSBOX could be obtained by 
using the intersection of both sets in Eq. (2). When x ∕∈ PLSBOX, the built 
PLS2 model is not applied to a spectrum, x, and in consequence, the 
spectrum is not assigned to any of the classes. If the PLSBOX defined in 
Eq. (2) is employed, the number of non-assigned spectra is lesser that if 
the intersection of the two sets defined by the critical values of T2 and Q 
were used. 

This is truly useful when the spectra are being recorded in-line, as it 
allows detecting unusual and anomalous spectra registered by the NIR 
sensor. If the frequency of such recordings is high, the possibility of 
sensor failure should be considered. In any case, the surely incorrect 
assignment of an anomalous spectrum to one of the classes is completely 
avoided. 

Another additional advantage of using the PLS2 regression model, is 
that the PLSBOX is common to every binary learner of each ECOC matrix, 
five, in the case of the matrix in Table 2. 

2.4.3. Step 3 for the PLS2-CM 
As a result of steps 1 and 2, and once that the spectra that are not in 

the PLSBOX were rejected, the 224 ŶT matrices from the predicted values 
by the PLS2 model for each one of the five binary learners of the ECOC 
matrix used (Table 2) are obtained. The number of the ŶT matrices 
corresponds to 32 selected ECOC matrices for each one of the 7 LVs used 
(see supplementary material of section 2.4.1). For instance, take the 
supposition that matrix M from Table 2 has been used, which is one of 
the 12 optimal ones for c = 5. Consider f2, and the two superclasses A 

and B. Through the univariate kernel density [36], which does not 

Table 2 
Example of an ECOC matrix for k = 4 and c = 5.  

Class Label Binary learner 

f1 f2 f3 f4 f5 

Class 1 1 1 1 1 1 1 
Class 2 2 − 1 − 1 − 1 1 1 
Class 3 3 − 1 − 1 1 − 1 1 
Class 4 4 − 1 1 − 1 1 − 1 

Abbreviations: Class 1, correct dough. Class 2, dough with excess of water. Class 
3, dough with lack of water. Class 4 dough with little kneading time. 
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assume any a priori probability, the density function is calculated for the 
f2 values in each superclass. Fig. 2 shows an ideal sketch of these two 
density functions, in blue for the superclass A and in red for the su
perclass B. 

By fixing the γi y δi probabilities (that do not have to be equal to 
every fi, i = 1, …, 5), the critical values cvi (A) and cvi (B) are computed 
with the previously fitted distribution so that Eq. (3) is fulfilled, 

P{ŷi ∈ fi(A)|ŷ ≤cvi(A)} = γi
P{ŷi ∈ fi(B)|ŷ ≤cvi(B)} = δi

(3)  

where P stands for probability, and ŷi is the value of the i-th binary 
learner calculated by the PLS2 model for a spectrum from the training 
set or the validation one. Notice that the definitions in Eq. (3) involves 
that γi would be a large value close to one, whereas δi would be close to 
zero. 

Both critical values cvi (A) and cvi (B) define the +1 or − 1 assign
ment to each spectrum, that is, they assign the spectrum to one of the 
superclasses. There are two possible situations: i) that cvi (A) is greater 
than cvi (B), which is the particular case shown in Fig. 2a for the binary 
learner f2 in Table 2 ii) that cvi (B) is greater than cvi (A), Fig. 2b for the 
same f2. In Fig. 2a, when a ̂yi value belongs to the interval marked in red, 
a +1 (x ϵ B) is assigned to the corresponding spectrum x, while if it 
belongs to the interval marked in blue, a − 1 (x ϵ A) is assigned. Finally, 
if it belongs to the intersection of the two intervals, x ϵ A ꓵ B, the two 
values, +1 and − 1 are assigned. Opposite to that, if the relative position 
of both critical values is that of the second case (Fig. 2b), the assignment 
to the superclasses is as explained in first instance, but there is the 
possibility that the value of ŷi is external to both intervals. In that 
particular case, the value assigned would be a 0 (this indicates that the 
corresponding spectrum x does not belong to either of the two 
superclasses). 

2.4.4. Step 4 for the PLS2-CM 
After the previous steps and having used an ECOC matrix of length of 

codework c to encode the classes, either one or more vectors of di
mensions c (formed by − 1 and +1), or a vector with some null coordi
nate, are assigned to each vector x (NIR spectrum). Furthermore, it can 
also happen that x ∕∈ PLSBOX in which case, all the coordinates of the 
vector are zero. This vector (or vectors) is the code estimated by PLS2 for 

the spectrum x. As a consequence, the spectrum x will be assigned to the 
class (or classes) whose row in the ECOC matrix matches the estimated 
code. 

2.4.5. Step 5 for the PLS2-CM 
In the training phase, the actual class to which each spectrum be

longs is compared with the one assigned in the previous step. In this way 
we have the sensitivity and specificity matrix, S=(sjm). If j ∕= m, sjm, is the 
specificity of class model m respect class j, and if j = m, then sjm is the 
sensitivity of class. In this case, there are 224 matrices of dimensions 4 ×
4 because there are 4 classes (S4x4). These matrices are function of the 
ECOC matrix and the number of LV of each PLS2 model. To decide which 
is the best model, the S matrices must be compared. There are few 
indices to evaluate these matrices when there are more than two classes. 
For classifiers such as SVM or PLS-DA, the most commonly used is the 
total efficiency, which is not very sensitive to changes in the elements of 
S. The analysis of this issue together with the proposal of a new DMCEN 
index and its evaluation is addressed and can be consulted in Ref. [20]. 
DMCEN, uses the entropy concept defined by Shannon as a measure of 
the order/information generated by a classifier in the training set (or 
validation set). It can take values from zero to one, and the lower the 
DMCEN value is, the better the performance of the model is. 

In this way, the PLS2-CM class model is obtained, which provides the 
minimum DMCEN by varying the ECOC matrix for coding the responses 
and the number of LV in the PLS2 regression. This k-classmodel is 
formed by the ECOC matrix and the PLS2 regression and will be applied 
to the XT test set to evaluate its capability of prediction. 

2.5. Software 

PLS2-CM has been programmed in MATLAB [37]. The PLS2 re
gressions and the “Sav-Gol” and “SNV” functions from PLS-Toolbox [38] 
were built and applied working also under MATLAB version 9.9.0 
(R2020b). DMCEN was calculated using an ad-hoc MATLAB code, 
available in Ref. [39], that calculates the global DMCEN and, for each 
class given an S matrix. PARVUS was used to build SIMCA and UNEQ 
models [40]. 

Fig. 2. Ideal sketch of the two density functions for decoding f2. a) when cvi (A) is greater than cvi (B), and b) when cvi (B) is greater than cvi (A). In blue for the 
superclass A and in red for the superclass B. (For interpretation of the references to colour in this figure legend, the reader is referred to the Web version of 
this article.) 
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3. Results and discussion 

Before analysing PLS2-CM results and, following the usual strategy in 
the control of processes, a preliminary exploratory analysis (Principal 
Component Analysis, PCA) has been performed separately for the 
kneading and rolling processes. 4 Principal Components (PCs) were 
selected in the first case and 5 in the second one. The models were made 
considering only the class of the correct doughs, projecting then the 
remaining classes. By representing the Q statistic for each one of the 
samples (Fig. S4 in the supplementary material) and the Hottelling’s T2 

(Fig. S5 in the supplementary material) it can be seen that there is a clear 
difference between the correct doughs (represented in red) and the other 
three ones (each one of them above the confidence limit), but it is not 
possible to differentiate the defect that each of the doughs presents, with 
the exception of the class with little kneading time in the case of the 
rolling process. That is to say, it can be confirmed the necessity of using a 
soft multiclass compliant classification method. 

Both for the construction of the models of k = 4 classes for kneading 
and rolling processes, a length of the codeword, c, between 3 and 7 has 
been used. Therefore, for each value of c, the number of ECOC matrices 
to be considered in the optimization have been 12, 3, 12, 4 and 1 
respectively (see supplementary material). The PLS2 models have been 
built by varying the number of LV from 3 to 9. As explained beforehand, 
this leads to evaluate 224 PLS2 regressions to obtain the minimum 
DMCEN. In order to define the PLSBOX (see Eq. (2)), the critical values 
T2

crit and Qcrit of the T2 and Q statistics have been chosen at the 95 % 
significance level. The critical values of the distributions of the binary 
learner fi, i = 1, … c, has been obtained regarding Eq. (3), establishing γi 
= 0.99 and δi = 0.01. 

3.1. Kneading process 

In this case, the PLS2 model (with 7 LV and the ECOC matrix from 
Table 2) provides the DMCEN value that is 0.1378 in training, and 
0.1232 in validation. The similarity between both DMCEN values, in
dicates that the k-class model is not overfitted. The number of non- 
assigned spectra to any of the four classes has been six, (3, 0, 1, 2 
belonging to the classes 1, 2, 3 and 4 respectively). The corresponding 
sensitivity and specificity matrices are shown in Table 3 ((a) in training, 
and b) in prediction). 

The sensitivities in training go from 0.9333 to 0.9556, and in pre
diction, from 0.9744 to 1.0000, that is, the model of each class correctly 
accepts the spectra that belong to that class, both in fitting and in pre
diction. The models of the correct doughs and the ones with little 
kneading time are entirely specific in training and in prediction, which 
means that they do not accept any spectrum from the other two 
remaining classes (those with water problems). In training, just the 
specificity of the class with little kneading time regarding the class with 
an excess of water is different from one, in fact, the model of the class 
with little kneading time accepts mistakenly only one spectrum of the 
class with an excess of water. In summary, correct-kneading and time- 
deficit kneading are perfectly modelled by the 4-class model during 
the kneading process and this, will let correctly kneaded doughs to go to 

the fermentation chamber, and those whose kneading time is not 
enough, can be kneaded for a longer time to correct that deficiency. 

Different from that, it does not occur the same for the specificity of 
the other two classes between them: the kneading with excess or deficit 
of water. The model for the kneading with an excess of water accepts a 
13.89 % of spectra corresponding to the kneading with lack of water in 
fitting and a 19.57 % in prediction. But, in a completely asymmetrical 
way, the kneading model with lack of water incorrectly accepts an 80.00 
% and a 92.11 % of the spectra with excess of water in fitting and in 
prediction, respectively. In other words, 76 spectra out of the 90 that 
constitute the class with an excess of water have also been assigned to 
the class with lack of water, while only 13 out of 108 of that class have 
also been assigned to the class with an excess of water (considering that 
some spectra can be unassigned). 

3.2. Rolling process 

The optimal ECOC matrix to encode the recorded spectra during the 
rolling process is the one showed in Table 4, with a code length of 4. 

The PLS2 model for these four binary learners has 3 LV and the 
DMCEN value is 0.0142 in training and 0 in prediction. In this case there 
are 7 spectra that are not assigned to any class, two from class 1 (correct 
dough), three from class 2 (dough with excess of water) and two from 
class 3 (dough with lack of water). That is the reason why the sensitivity 
of the k-class-model for these classes is 0.9773, 0.9659 and 0.9740 
respectively, whereas the sensitivity for the class with little kneading 
time is equal to one. 

None of the classes have spectra assigned to another class, as 
occurred between classes 2 and 3 during the kneading. The specificities 
of the model of each class regarding the other three ones is equal to one. 
In prediction, all the sensitivities and specificities are equal to one. 

The models obtained with PLS2-CM and the NIR spectra can 
completely distinguish the four classes, one from the others: correct or 
deficient kneading, and each one of the deficiencies (excess of water, 
lack of water or little kneading time) from the others. That will allow to 
solve possible defects in the doughs (if it were the case) before moulding 
and baking them to obtain the biscuits. The excess of water would be 
solved by adding more flour, whereas if there was a lack of water, the 
dough would be discarded to be reused in a second kneading (it is 
assumed that a short kneading time at this stage could have been solved 

Table 3 
Kneading process. Sensitivity and specificity matrices a) in training and b) in prediction, of the 4-class model using the NIR spectra obtained during the kneading 
process.  

a) Training b) Prediction   

Class model   Class model 

C1 C2 C3 C4 C1 C2 C3 C4 

True class C1 0.9333 1.0000 1.0000 1.0000 True class C1 0.9744 1.0000 1.0000 1.0000 
C2 1.0000 0.9556 0.2000 0.9889 C2 1.0000 0.9737 0.0789 1.0000 
C3 1.0000 0.8611 0.9352 1.0000 C3 1.0000 0.8043 1.0000 1.0000 
C4 1.0000 1.0000 1.0000 0.9483 C4 1.0000 1.0000 1.0000 0.9796 

Abbreviations: C1, correct dough. C2, dough with excess of water. C3, dough with lack of water. C4, dough with little kneading time. 

Table 4 
ECOC matrix for the 4-class model using the NIR spectra obtained during the 
rolling process.  

Binary learners  

f1 f2 f3 f4 

Class 1 1 1 1 1 
Class 2 − 1 − 1 − 1 1 
Class 3 − 1 1 1 − 1 
Class 4 1 − 1 1 − 1 

Abbreviations: Class 1, correct dough. Class 2, dough with excess of water. Class 
3, dough with lack of water. Class 4, dough with little kneading time. 

D. Castro-Reigía et al.                                                                                                                                                                                                                         



Chemometrics and Intelligent Laboratory Systems 246 (2024) 105092

7

already during the kneading process). All of this leads to great savings in 
energy and financial expenses, as well as avoiding food waste. 

3.3. Comparison with SIMCA and UNEQ 

The PLS2-CM is very versatile, and it adapts to the characteristics of 
each data set thanks to its coding and decoding of classes. It has been 
introduced in this work as a soft multiclass compliant classification 
method that allows to assign an object to one, more than one, or even 
none of the classes. In chemometrics, SIMCA and UNEQ are commonly 
used as soft classifiers [41], having in common that each class is 
modelled separately. To evaluate the performance of the proposed 
method, it has been decided to compare the results obtained with those 

provided by SIMCA and UNEQ. These two methods will also provide a 
sensitivity-specificity matrix as a result of the classification, that will be 
evaluated by DMCEN. As a reminder, the lower DMCEN, the better the 
model performance is. 

3.3.1. SIMCA results 
The SIMCA models have been built with the same number of com

ponents per class and three cancellation groups have been used to 
perform CV procedure. The optimal model will be chosen according to 
the lowest DMCEN obtained in CV. This also applies to UNEQ. It has 
been worked at 95 % confidence level for class spaces, and the class 
boundary was determined according to the confidence limit. 

As can be seen in Fig. 3a, in the case of the kneading process, and in 

Fig. 3. DMCEN values as functions of the number of principal components in the inner space in SIMCA model for a) the kneading process and b) the rolling process.  

Table 5 
Kneading process. DMCEN and sensitivity and specificity matrices of SIMCA model using 6 PCs. a) in training and b) in CV, of the 4-class model using the NIR spectra 
obtained during the kneading process.  

a) Training. DMCEN = 0.2062 b) CV. DMCEN = 0.2384   

Class model   Class model 

C1 C2 C3 C4 C1 C2 C3 C4 

True class C1 0.7555 1.0000 1.0000 1.0000 True class C1 0.7555 1.0000 1.0000 1.0000 
C2 1.0000 0.7888 0.7667 1.0000 C2 1.0000 0.6222 0.8148 1.0000 
C3 1.0000 0.8889 0.8333 1.0000 C3 1.0000 0.8889 0.7467 1.0000 
C4 1.0000 1.0000 1.0000 0.7391 C4 1.0000 1.0000 1.0000 0.7217 

Abbreviations: C1, correct dough. C2, dough with excess of water. C3, dough with lack of water. C4, dough with little kneading time. 
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Table 6 
Rolling process. DMCEN and sensitivity and specificity matrices of SIMCA model using 2 PCs. a) in training and b) in CV, of the 4-class model using the NIR spectra 
obtained during the rolling process.  

a) Training. DMCEN = 0.0992 b) CV. DMCEN = 0.1145   

Class model   Class model 

C1 C2 C3 C4 C1 C2 C3 C4 

True class C1 0.8863 1.0000 1.0000 1.0000 True class C1 0.8409 1.0000 1.0000 1.0000 
C2 1.0000 0.8863 1.0000 1.0000 C2 1.0000 0.7841 1.0000 1.0000 
C3 1.0000 1.0000 0.7272 1.0000 C3 1.0000 1.0000 0.7532 1.0000 
C4 1.0000 1.0000 1.0000 0.8072 C4 1.0000 1.0000 1.0000 0.7349 

Abbreviations: C1, correct dough. C2, dough with excess of water. C3, dough with lack of water. C4, dough with little kneading time. 

Table 7 
Prediction results for SIMCA model. DMCEN and sensitivity and specificity matrices for a) Kneading process, and b) Rolling process of the 4-class model.  

a) Kneading. DMCEN = 0.2062 b) Rolling. DMCEN = 0.0775   

Class model   Class model 

C1 C2 C3 C4 C1 C2 C3 C4 

True class C1 0.8205 0.9778 0.9667 1.0000 True class C1 1.0000 1.0000 1.0000 1.0000 
C2 1.0000 0.8684 0.6316 1.0000 C2 1.0000 1.0000 1.0000 1.0000 
C3 1.0000 0.8478 0.8478 0.7609 C3 1.0000 1.0000 0.8182 1.0000 
C4 1.0000 1.0000 1.0000 0.8000 C4 1.0000 1.0000 1.0000 0.8889 

Abbreviations: C1, correct dough. C2, dough with excess of water. C3, dough with lack of water. C4, dough with little kneading time. 

Fig. 4. DMCEN values as function of the number of principal components used before building the UNEQ model for a) the kneading process and b) the roll
ing process. 
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Fig. 3b in the case of rolling process, the lowest DMCEN was obtained in 
CV using 6 and 2 PCs, respectively. On the one hand, Table 5 shows the 
sensitivity and specificity matrix obtained with those 6 PCs, both in 
training (DMCEN = 0.2062) and in CV (DMCEN = 0.2384), whereas on 
the other hand, Table 6 reflects the DMCEN value and the corresponding 
sensitivity-specificity matrices when 2 PCs are selected in the rolling 
process case. 

All the remaining sensitivity-specificity matrices for each model 
depending on the number of PCs, as well as the DMCEN value in training 
and CV can be consulted in the supplementary material (Tables S2–S11). 

Once the optimal number of PCs has been selected, the sensitivity- 
specificity matrix in prediction is obtained together with its DMCEN 
value. Table 7 shows the results obtained: a) for the case of kneading, 
and b) for the case of rolling using the same prediction set employed in 
PLS2-CM. 

3.3.2. UNEQ results 
The same strategy as in SIMCA has been applied with UNEQ, that is, 

the optimal model has been selected in each case based on the best 
DMCEN in CV. With UNEQ is necessary to have, at least, three times as 
many objects as variables per class, that is why PCs are previously done 
to reduce the dimensionality of the problem. In this way, for the case of 
kneading, 7 PCs were selected, and for the rolling, 4 (Fig. 4a and b, 
respectively). The sensitivity-specificity matrices for all models can be 
consulted, once again, in the supplementary material, both in training 
and in CV (Tables S12–S17 for the kneading process and Tables S18–S21 
for the rolling process). On the other hand, Table 8 shows the prediction 
results for these matrices for the selected models and for both processes 
using the same prediction set employed in the PLS2-CM. 

3.3.3. Comparative analysis regarding DMCEN 
Finally, as a summary, Fig. 5 represents the DMCEN values in pre

diction for each industrial process and each chemometric strategy. 
Observing that figure, one can conclude that the method that presents 
the best performance is the proposed one, the PLS2-CM. 

By doing a more detailed analysis, it can be said that in prediction 

UNEQ offers in general a greater sensitivity, but worse specificity, while 
SIMCA gives more importance to specificity, and consequently, worse 
sensitivity is obtained. This is why the use of DMCEN is essential, 
otherwise it would be difficult to evaluate which results are better. Based 
on the results of the PLS2-CM, it can be said that this soft multiclass 
compliant classification method has been made possible to detect de
ficiencies in the biscuits manufacture process, and above all, and in 
comparison with traditional methods, it has made possible to increase 
the information regarding the failures (misclassifications) of the che
mometric models. The DMCEN values obtained with PLS2-CM (0.1232 
and 0.0000 for kneading and rolling processes, respectively) is always 
better than the ones obtained with SIMCA and UNEQ model. 

4. Conclusions 

In this work, in-line NIR spectra were used together with PLS2-CM in 
order to detect three possible defects related to the amount of water and 
the mechanical energy that can occur during the kneading process in the 
manufacturing of biscuits. It was considered this as a more convenient 
way to evaluate their quality than taking into account their rheological 
properties. The four following classes were considered: correct dough, 
dough with an excess of water, with lack of water and with little 
kneading time. 

With the spectra recorded during the kneading, the class models 
allow not only to fully distinguish the correct doughs from the other 
three classes with defects with the perfect specificity (equal to 1), but 
also the model with little kneading time is completely specific regarding 
the other three. On the contrary, the kneading model with lack of water 
accepts a high percentage (92 %) of the spectra corresponding to the 
kneading with excess of water. Nevertheless, after the fermentation, in 
the rolling process, the same doughs, are modelled with complete 
specificity. 

In summary, NIR spectroscopy along with PLS2-CM has been proven 
to be an effective technology to detect the most common deficiencies in 
the kneading process also reaching the conclusion that the identification 
of the most common deficiencies is not complete until the fermentation 
ends. The great advantage of using a unique model for the four classes 
such as PLS2-CM is that it allows to increase the information about the 
failures of the model. Either due to the way in which the spectra are 
assigned to several classes (the asymmetry observed in the classes with 
excess and deficit of water in the kneading process) or due to the non- 
assignment to any of them (spectra out of PLSBOX for the data coming 
from the rolling process). This information would be masked by a forced 
assignment of all spectra to a single class as occurs with a classifier. The 
results obtained with the applied method have been proven to be better 
than those achieved when using traditional methods such as SIMCA or 
UNEQ. 

Funding 

This work has been funded by the Ministerio de Comercio, Industria 
y Turismo under Project PHOTONICS4BAKERY (AEI-010500-2021b- 
111) Junta Castilla y León, Consejería de Educación under Project 
BU052P20 cofinanced with Regional European Funds. 

Table 8 
Prediction results for UNEQ model. DMCEN and sensitivity and specificity matrices for a) Kneading process, and b) Rolling process of the 4-class model.  

a) Kneading. DMCEN = 0.2614 b) Rolling. DMCEN = 0   

Class model   Class model 

C1 C2 C3 C4 C1 C2 C3 C4 

True class C1 0.9744 1.0000 0.9744 1.0000 True class C1 1.0000 1.0000 1.0000 1.0000 
C2 0.9737 1.0000 0.2105 1.0000 C2 1.0000 1.0000 1.0000 1.0000 
C3 0.9130 0.8043 0.9783 0.2826 C3 1.0000 1.0000 1.0000 1.0000 
C4 0.9800 1.0000 0.2200 0.9800 C4 1.0000 1.0000 1.0000 1.0000 

Abbreviations: C1, correct dough. C2, dough with excess of water. C3, dough with lack of water. C4, dough with little kneading time. 

Fig. 5. Summary results for DMCEN in prediction with an external data set for 
each process and each chemometric strategy. 
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