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Abstract
Both wear-induced bearing failure and misalignment of the powertrain between the rotor and the electrical generator are
common failure modes in wind-turbine motors. In this study, Semi-Supervised Learning (SSL) is applied to a fault detection
and diagnosis solution. Firstly, a dataset is generated containing both normal operating patterns and seven different failure
classes of the two aforementioned failure modes that vary in intensity. Several datasets are then generated, maintaining
different numbers of labeled instances and unlabeling the others, in order to evaluate the number of labeled instances needed
for the desired accuracy level. Subsequently, different types of SSL algorithms and combinations of algorithms are trained and
then evaluated with the test data. The results showed that an SSL approach could improve the accuracy of trained classifiers
when a small number of labeled instances were used together with many unlabeled instances to train a Co-Training algorithm
or combinations of such algorithms. When a few labeled instances (fewer than 10% or 327 instances, in this case) were used
together with unlabeled instances, the SSL algorithms outperformed the result obtained with the Supervised Learning (SL)
techniques used as a benchmark. When the number of labeled instances was sufficient, the SL algorithm (using only labeled
instances) performed better than the SSL algorithms (accuracy levels of 87.04% vs. 86.45%, when labeling 10% of instances).
A competitive accuracy of 97.73% was achieved with the SL algorithm processing a subset of 40% of the labeled instances.

Keywords Wind turbine · Powertrain failures · Bearing failures · Semi-supervised learning · Fault detection and diagnosis

1 Introduction

A large number of wind-turbine installations generate a sig-
nificant proportion of total electricity production. They are
a notable source of renewable energy and their continued
growth is likely, due to the renewable electricity generation
targets that are now established. For example, the aim of the
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European Union is to generate 32% of its electricity from
renewable sources by 2030 [1]. Wind turbines are complex
electromechanical systems that transform the wind into elec-
trical energy. For optimal energy production, wind turbines
are invariably located in open countryside, at some distance
from the point of consumption, especially in urban areas. Fol-
lowing their installation, they also have associated operating
and maintenance costs. A good description of the compo-
nents in a wind turbine drivetrain can be found in [2]. In
addition, adverse environmental conditions increase the risks
of multiple failures, which can be countered through the use
of FailureDetection andDiagnosis (FDD)methods thatmax-
imize turbine operating times and minimize operating and
maintenance costs [3, 4]. FDD should be focused on those
types of failure with higher maintenance costs and down-
times. In windfarms, those failures are related to the power
chain or gearbox, due to their mechanical complexity, highly
demanding working conditions, and variety of possible fail-
ure modes. Themost dangerous failures of these components
are rotor blade misalignment and imbalance of the power
chain caused by bearing fatigue and gear damage [5]. Their
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repair involves winching a heavy sub-assembly in and out
of the nacelle. Lengthy procurement times can also result in
prolonged downtimes. Slight deflection of the external axis of
the power train, due to the forces transmitted by the rotating
blades, is sufficient to cause maladjustment, thereby mis-
aligning the internal power train axis with the external one.
Imbalance of the power chain is usually a consequence of
damaged axis bearings or gearing mechanisms, usually due
to insufficient lubrication, and shock to the mechanical chain
(e.g., turning windmills on and off with ice on the blades),
etc.

As the nature of wind is variable and turbine dynamics
are not linear, a wind turbine is an example of a machine
that operates under variable loads and speed. For a recent
analysis of fixed and floating wind turbine drivetrain loads,
see [6]. Although they can have a direct-drive (gearless)
design, around 75% of industrial wind turbines have a geared
design [7]. Typically, a two or three stage gear set is used, in
which planetary and other gearing systems are combined. A
planetary gear is used on the low-speed shaft, because it can
withstand high torque loads.

A wind turbine consists of fixed and rotatory components
that may fail. A component failure can propagate and affect
performance and perhaps lead to a general failure. Different
types of failures can result in anything from poor perfor-
mance to increased component failure rates. For instance,
torque deviation failure in the generator/converter may be
due to an internal fault in the converter electronics or a devi-
ation in the torque estimation of the converter, which in
turn may be due to either improper design or manufactur-
ing defects. Torque deviations affect functional control and,
therefore, power generation. Fluctuations in turbine dynam-
ics and power generation can cause both material fatigue and
power production problems for a wind turbine farm and even
for the electricity grid.

Fluctuatingweathermeans that several wind-turbine com-
ponents are more prone to wear and fatigue than others:
the drivetrain, gearbox, and generator are the most affected
by maintenance downtime [8]. The rotor and blades, pitch,
yaw and tower system and generator and control system are
also prone to failure [4]. Wind-turbine gearboxes can often
fail early on, due to varying wind loads, and may require
replacement parts and maintenance within a few years. The
main cause of many common industrial wind-turbine failure
modes is related to bearing defects resulting from micro-
pitting, scuffing, and cracking of the white etching area. In
addition, bearings can skid during starts and stops, due to
short-term dynamic loads [7].

In this paper, both the effects of a few labeled and unla-
beled items (a Semi-Supervised Learning (SSL) problem)
on the diagnosis of wind-turbine gearbox powertrain failures
and the best techniques to predict each failure mode are stud-
ied. The fault diagnosis task in this case presented two main

limitations under industrial conditions: datasets are usually
strongly imbalanced (many instances of functional condi-
tions and very few of fault situations) andworking conditions
are often not labeled. No expert has time to stop the sys-
tem, in order to identify small degrees of failure, although
the initial stages of damage and degradation provoke further
wear that can lead on to catastrophic failure. But both restric-
tions, imbalance and unlabeling, are almost impossible to test
together in the existing datasets, because dataset size under
both restrictions is so small that no existing Machine Learn-
ing (ML) technique could ever extract useful information.
The authors have therefore focused on solving the problem
through two steps. The first step was to study the level of
imbalance that could be reasonable before theML techniques
loose accuracy [9] In this research, the capabilities of SSL
to resolve the limitations of labeled instances are studied.
To do so, the methodology described in Fig. 1 is followed.
Firstly, an experimental dataset is collected from different
testbed working conditions and states. Secondly, the dataset
is processed to extract new features using filtering and sta-
tistical methods, while datasets are generated with different
proportions of labeled instances. Thirdly, both supervised
and semi-supervised methods are tested on those datasets to
evaluate their performance in terms of different quality indi-
cators. Finally, the best methods are identified and compared
with the existing bibliography.

The rest of this paper is organized as follows. In Section 2,
the basic background of SSL, the tool used to train and to
test the learning algorithms, and SSL approaches related to
FDD are briefly presented. In Section 4, the design of the
SSLexperiment is described. In Section 4.3, the experimental
results are commented and compared to other approaches. In
Section 5, the conclusions are presented.

2 Background

In this section, a brief description of SSL [10] is pro-
vided. Then, the most-recent literature [11–19] that uses
SSL techniques and approaches for FDD is reviewed. The
section continueswith a review of recent literature that exam-
ines FDD in typical wind-turbine parts and components.
Finally, the open-source machine learning software pack-
age, Knowledge Extraction based on Evolutionary Learning
(KEEL) [20] is presented for use in this research.

2.1 Semi-Supervised Learning (SSL)

Machine Learning (ML) serves to pinpoint relations within
datasets composed of instances that in turn contain features.
When these datasets are recorded in an industrial envi-
ronment, they usually represent the behaviour of industrial
processes such as mechanical and chemical processes. Typ-
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Fig. 1 Graphical abstract

ical processes include engines, bearings, gearboxes, tanks,
flows, temperatures, electrical voltages, etc., depending on
the type of process. Industrial processeswhenmonitored very
often consist of operating patterns under normal conditions,
and one or more operating patterns under fault conditions,
and they usually share some characteristics, such as the pres-
ence of background noise. In the literature, these data are
very often preprocessed using typical signal processing to
perform time and frequency and time-frequency analyses.

Four main approaches to ML are considered [10, 21, 22]:
Supervised Learning (SL), Unsupervised Learning (UL),
SSL, and Reinforcement Learning (RL). RL is used for fur-
ther improvement of a previously trained model while being
used for its intended purpose. The main difference between
supervised and unsupervised approaches is the presence of
one or more special dataset features that contain one or more
expected solution values or one or more labels that classify
each instance. Generally, obtaining the expected output(s)
or labeling the instances with their corresponding error type

can be costly, and time-consuming, and will usually require
expert assistance. SSL is an intermediate approach between
SL and UL. For a recent review of SSL methods for FDD in
industry, see [23]. And in [24] there is a review of recent ML
proposals for wind turbine fault diagnosis, including some
semi-supervised methods.

There are several approaches towards generating mod-
els of higher accuracy that usually employ a few labeled
instances together with many unlabeled ones. For instance,
Active Learning [25] processes the unlabeled instances to
select those that contribute more than any others to the model
that is being learned and its improvement, before an oracle
(invariably an expert) is asked to label them. In that way,
active learning attempts to minimize the number of true
labeled instances, thereby reducing both labeling time and
cost. SSL algorithms are programmed to improve the accu-
racy of models that are learned from datasets that consist of
a limited number of labeled instances and a certain number
of unlabeled instances. SSL processes reduce the number
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of labeled instances to the minimum needed for high accu-
racy, i.e., equal or close to the accuracy obtained using a fully
labeled dataset. A good up-to-date review of semi-supervised
methods, arranged in a taxonomy, can be found in [10].

SSL is usually considered to have two central approaches
[10]: (i) transductive learning; and (ii) inductive learning.
Both SSL approaches use unlabeled instances to improve the
model that is being learned, but their main difference is the
way in which the unlabeled instances are considered. Trans-
ductive learning aims to label only the unlabeled instances, so
it does not usually create a proper model, as there are no new
instances to be classified. The aim of inductive learning is to
improve themodel that is being learned, by using information
from both the unlabeled and the labeled instances, for gener-
alization purposes.While transductive learning mainly relies
on graph-based methods, various inductive learningmethods
have been proposed, based on different assumptions. Induc-
tive learning can be categorized into various SSL approaches,
including unsupervised pre-processing, wrapper methods,
and intrinsically semi-supervised methods. These categories
can be further sub-divided into more specific approaches.
Further details on the underlying assumptions of SSL, tax-
onomy, and the diverse methods used in each category, can
be found in [10, 23].

2.2 Semi-Supervised Learning (SSL) for wind-turbine
Failure Detection and Diagnosis (FDD)

Applying semi-supervised techniques and methods to wind-
turbine FDD is a new research field reported in only a few
very recent papers.

In [11], semi-supervised condition monitoring was pro-
posed for bearing fault diagnosis in offshore wind turbines.
A coupled residual CNN was proposed for an information
fusion approach. Both vibration sensor data and acoustic
signals were used as inputs. For testing purposes, an exper-
imental platform was used to simulate different bearing
failures affecting offshore wind turbines. Data were recorded
under normal conditions and four failure modes, including
typical inner ring, ball, and outer ring failures, and a com-
pound failure. Two hundred instances consisting of signal
segments were recorded for each condition and randomly
divided into training and test sets. Ten percent of the train-
ing set was labeled. White Gaussian noise was added to
all recorded segments to simulate the real operating envi-
ronment. The proposed method achieved an Accuracy of
98.18%.

Accuracy is one of severalmetrics that can be used tomea-
sure the goodness of a classifier. Typically, those instances
that are correctly classified as positive are called True Pos-
itives (TP). Those correctly classified as negative are called
True Negatives (TN), and those incorrectly classified would
be False Positives (FP) or False Negatives (FN). Accuracy is

defined in (1).

Accuracy = T P + T N

T P + FP + T N + FN
(1)

Qian et al. approached blade cracking detection in a
number of ways. In [14], they studied the detection and
diagnosis of wind-turbine-blade faults using SSL with class-
imbalanced datasets. Industrial datasets are often class-
imbalanced: more instances are available for normal condi-
tion or some failure classes than for others. It all poses a prob-
lem, as the learning algorithm may be focused on increasing
the detection or diagnostic accuracy in the over-represented
failure classes and can ignore the under-represented classes,
a scenario which corresponds to an overfitting problem [26].
As usual, when using class-imbalanced datasets, other mea-
sures were calculated instead of accuracy. The F1 score
ranged from 0.785 to 0.964, depending on which of the five
wind-turbine datasets obtained from real wind turbines were
used.

The F1 score, an accuracy metric that attempts to account
for differences in the number of instances in a class-
imbalanced dataset, is defined below in Equation 2.

F1 score = 2T P

2T P + FP + FN
(2)

In [13], a hybrid network called PUHN, which combines
a Deep Neural Network (DNN) and Positive Unlabeled (PU)
learning, was proposed as a semi-supervised fault detection
solution for blade cracking in wind turbines. PU learn-
ing [27] learns a binary classifier and requires only some
positively labeled instances along with other unlabeled pos-
itive or negative instances. A non-negative risk PU network
trained a binary classifier, a deep stacked AutoEncoder (AE)
performed feature extraction, and a clustering layer was
incorporated to improve class separability and class prior
estimation of PU learning. Accuracy, Recall, and F1 score
were used as metrics. The authors reported an Accuracy of
0.822 (Recall 0.907 and F1 score 0.832) using a dataset of
instances from 24 wind turbines.

Recall, or sensitivity, is an accuracy metric that measures
the capability of the model to detect positive instances. It
is calculated as the number of positive correctly classified
instances (TP) out of all instances classified as positive in
the dataset. Recall is defined in (3).

Recall = T P

T P + FN
(3)

And in [12], it was proposed to apply a PU learning
method called Probability Ratio Least-Square Importance
Fitting (PRL-SIF) under Labeling Bias (LB) to the problem
of wind turbine blade early cracking fault detection. Feature
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extraction and dimensionality reduction based on functional
analysis was performed first of all and then the PRL-SIF
method was applied. Accuracy was used together with the F1
score and theAreaUnder theCurve of theReceiverOperating
Characteristic (AUC-ROC) metrics. It was reported that by
using 20% of normal labeled instances, a 90% classification
accuracy was achieved on a dataset consisting of instances
from 23 wind turbines. The AUC-ROC curve is a graphical
representation and a way of measuring the performance of an
ML model. It measures the capability of a binary classifier
to distinguish between classes.

There are several proposals on the detection of wind tur-
bine blade icing. A recent review [28] of icing detection for
wind turbine blades included a section on semi-supervised
methods. In [18], Unified Imbalanced Semi-Supervised Con-
trastive Learning (UISSCL) was proposed to address the
usual class imbalanced data problemand the semi-supervised
approach simultaneously. The proposed method included
a data augmentation step where Gaussian noise (Rando-
mAddGaussian) was randomly added to generate new data
sequences and the data sequence was multiplied by a ran-
dom factor (RandomScale) to scale it. Semi-supervised
contrastive learning was then applied, using both labeled
and unlabeled data instances, and including a regulariza-
tion term in the contrastive loss function, to compensate for
the class imbalance problem. Evaluation metrics included
Accuracy, Precision, Recall, G-mean, and F1 score. Two
different datasets were used for testing. Both datasets were
class-imbalanced: 88.92% and 88.68% were, respectively,
normal condition instances, 6.09% and 5.58% were, respec-
tively, faulty condition instances, and the remainder (4.99%
and5.74%, respectively)were unlabeled instances. The accu-
racy and the G-mean metrics, and the F1 scores reported for
both datasets were between 0.9839 and 0.9990.

Precision is an accuracy metric that measures the capabil-
ity of the model to detect negative instances. It is calculated
as the number of negative correctly classified instances (TN)
over all instances classified as negative in the dataset. Preci-
sion is defined in (4).

Precision = T N

T N + FP
(4)

G-mean is an attempt to combine the Recall and Precision
metrics into one measure. The G-mean measure is defined in
(5).

G-mean = √
Recall × Precision (5)

In [19], it was proposed to use theXGBoost algorithm [29]
as a base algorithm for semi-supervised Tri-Training [30], to
solve the early detection of blade icing in wind turbines. In
addition, instead of using over-sampling or under-sampling

techniques to deal with the class imbalance problem, a cost-
sensitive approach was chosen and a focal loss function
replaced the usual loss function in the XGBoost classifiers
to solve the common class imbalance problem and inac-
curate labels in the datasets. The focal loss function used
different weights to compute the loss depending on the dif-
ficulty of classifying the instances. Three new features were
constructed using existing features, those features that were
correlated with others using Pearson correlation coefficients
were removed, and then the data were normalized. Data from
3 wind turbines were used. The training set consisted of 70%
of the instances and the remaining 30% comprised the test
set. Different percentages of labeled instances from 10% to
90% were used for the experiments and the metrics Accu-
racy, Precision, Recall, F1 score and Matthews Correlation
Coefficient (MCC) were computed. Using 60% of labeled
instances, an Accuracy of 0.974 was reported (0.92 of MCC,
0.93 of F1 score, 0.94 of Precision, and 0.933 of Recall).

MCC is defined to produce a high score only if all the four
basic measures (TP, TN, FP, FN) are close to their best value.
MCC is defined in (6).

MCC = T P × T N − FP × FN√
(T P + FP) × (T P + FN ) × (T N + FP) × (T N + FN )

(6)

In [15], Chen et al. proposed an enhanced version of
Random Forest (RF) using Graph-based Semi-Supervised
Learning (GSSL) and a Decision Tree (DT) whenever there
were insufficient labeled instances for fault diagnosis in a
wind-turbine gearbox. GSSL and DT methods were used
for increasing the labeled instances when training the RF
model. If both methods predicted an unlabeled instance,
then it was added to the labeled dataset together with the
predicted label (pseudo-labeling). The SpectraQuest’sWind-
Turbine Drivetrain Diagnostic Simulator (WTDS) [31] was
used for testing. Six different operating conditionswere used,
combining motor frequencies of 6, 10, and 14 Hz, and load
voltages of 5, and 8. Normal and four abnormal (worn sur-
face, missing tooth, chipped tooth and cracked tooth) gear
working operations were used. In all, 16 signal segment
instances were collected (each totaling 96 instances) for the
different types of operations and condition, each with 112
features, groupedusing the 5gearworking conditions. Exper-
iments were performed using 180 labeled instances and 300
unlabeled instances. Sixty of the 300 unlabeled instances
were randomly chosen for pseudo-labeling, but only 50 of
the 60 unlabeled instances were pseudo-labeled, so the final
labeled set for training the RF consisted of 230 instances.
This approach yielded an RF accuracy of 99.38%.

In [16], Wang et al. approached the diagnosis of wind-
turbine bearing faults by using Multiscale Permutation
Entropy (MPE) to extract the feature information of bearing
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vibration signals and to construct a high-dimensional feature
representation; Mahalanobis distance along with SSL and
manifold learning were used to reduce the dimensionality of
the representation; and anSVMclassifierwas trainedwith the
help of a Beetle Antenna Search (BAS) algorithm to search
for the best SVMparameters. The experiment was conducted
using the SpectraQuest’s WTDS platform, with the motor
speed set to 0.8 Hz, a constant load of 10 volts was applied,
and ER-12K bearings were used. There were four working
conditions: the normal working condition, and inner race-
way, outer raceway, and bearing failure modes. Eighty sets
of vibration acceleration signals were collected, each con-
taining 3000 sampling points. In total, 320 instances were
collected. For each working condition, 20 instances were
randomly chosen for label removal. The proposed method
achieved 100% recognition accuracy.

In [17], Tang et al. introduced a fault-detection method
for the wind-turbine pitch system. They proposed the use
of a semi-supervised Optimal margin Distribution Machine
(ssODM), optimized using aDynamic State TransitionAlgo-
rithm (DSTA) that selects the best hyperparameters for
improving the fault detection model. Data were acquired
from a domestic wind farm of 1.5 MW double-fed wind tur-
bines. The dataset was sampled at intervals of 1 second and
the samples were isolated 30 minutes before the onset of
the faults up until 30 minutes after the faults. Three kinds
of wind-turbine pitch faults were considered: (1) emergency
stop fault of the pitch system; (2) aCANBUScommunication
fault between pitch PLC and pitchmaster (the servo driver) of
blade 1; and (3) a low temperature invoked blade-2 axle-box
fault affecting the pitch. The rawdatawere pre-processed and
feature selection was performed by applying an RF to rank
the importance of the features. After eliminating features that
showed strong correlations, the features were reduced from
the initial 58 to 24. The proposal was tested using instances
labeled at 5% and 10%, however, each type of failure was
tested independently as a binary problem, detecting whether
the instance was faulty or normal. The proposal obtained the
lowest false positive and false negative rates compared to the
other 3 possible alternatives.

2.3 Overview of recent SSL proposals for wind
turbine-related technologies

Various SSL approaches fromML, Deep Learning (DL), and
RL have been successfully applied to typical wind-turbine
tasks, such as: fault detection, fault identification, condition-
based monitoring, and related tasks for bearings, drivetrains,
gearboxes, rotating machinery, and others. A brief overview
of some recent proposals is presented below.

Recent surveys on Deep Semi-Supervised Learning (DSSL)
can be found in [32, 33]. In [32], DSSL proposals were
classified into five main groups, namely: generative, con-

sistency regularization, graph-based, pseudo-labeling, and
hybrid methods. In [33], proposals focusing on consistency
regularization methods using DSSL approaches with image
datasetswere reviewed. It shouldhowever benoted that learn-
ing from images requires and permits some techniques that
are neither common nor even possible when the datasets have
other characteristics, such as individual instances consisting
of a few instantaneousmeasurements of an industrial plant or
a physical system, rather than graphical information. There-
fore, Data Augmentation (DA) techniques occupy a large
part of [33], as it is recognized that they often produce great
improvement in the capabilities of the model that is learnt.
It is worth mentioning that the image datasets usually used
for benchmarking contain a considerable number of images.
For example, the CIFAR-10 and CIFAR-100 datasets [34]
contain 60K images, MNIST [35] contains 70K images, the
SVHNdataset [36] containsmore than 99K images, the STL-
10 dataset [37] contains 113K images (100K of which are
unlabeled), NORB [38] contains nearly 350K images, and
the ImageNet dataset [39] contains over 14 million images.

In some recent references, there are proposals to perform
semi-supervised fault detection, diagnosis and condition
monitoring in bearings in different ways. For a recent review
on SSL methods for anomaly detection, see [40]. A DSSL
approach [41] and a Safe Semi-Supervised Support Vector
Machine (S4VM) [42] were used for incipient fault detection
in bearings. A recent review of condition-based maintenance
and recent references using SSL approaches and proposals
for fault detection in bearings, gearboxes, induction motors,
generators, and other typical industrial machinery can also
be consulted in [43].

For fault diagnosis in bearings, a cross-domain approach
and Transfer Learning (TL) were proposed in [44, 45]; Gen-
erative Adversarial Network (GAN) approaches in [46, 47];
Convolutional Neural Networks (CNNs) in [48, 49]; a Deep
Adversarial Semi-Supervised (DASS) method was proposed
in [50]; a Deep Reinforcement Learning (DRL) approach
in [51]; Graph-based learning methods can be found in [52,
53]; Laplacian Regularization (LapR) in [54]; a consistency
regularization-based approach in [55]; and Local Fisher Dis-
criminant Analysis (LDA) in [56].

In [16], it was proposed to use a swarm intelligence
approach for bearing fault diagnosis in wind turbines. This
reference is described in more detail below. In [57], it was
proposed to use metric learning techniques for bearing con-
dition monitoring.

Rotating machinery has also received some attention and
some semi-supervised proposals can be found in the recent
literature. In [58], it was proposed to use a consistency-based
approach for fault diagnosis in rotating machinery. More
specifically, fault diagnosis in gearboxes was proposed by
modifying an AE in [59] and using a graph-based approach
in [60]. Fault diagnosis in planetary gearboxes was pro-
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posed using Semi-Supervised Multiple Association Layers
Networks (SSMALN) in [61] and using TL in [62]. Fault
diagnosis in drivetrains was proposed using a GAN in [63].

A very recent review of condition monitoring approaches
using ML techniques can be found in [64]. Unfortunately,
only one of the reviewed references is classified as SSL.

It may be of interest to note that there is no consensus over
the reference number or percentage for labeled instances in
the SSL datasets. Some authors consider 30 as the maxi-
mum number of labeled instances per class for a sample to
be considered small [65]. 10 has also been proposed as the
maximum number to consider for an extremely limited sam-
ple [66].

2.4 KEEL

Knowledge Extraction based on Evolutionary Learning
(KEEL) is an open-source software tool programmed in Java,
which includes evolutionary algorithms and soft comput-
ing techniques for standard Data-Mining problems such as
regression, classification, and association rules, as well as
data pre-processing techniques [20].

KEEL consists of three main modules: a module for SL, a
module for SSL, and a module for learning with imbalanced
datasets. The SSL module includes several methods such
as Self-training [67], Co-Training [68], RASCO [69], Rel-
RASCO [70], CoForest [71], ADE-CoForest [72], Demo-
craticCo-learning [73],CLCC[74],CoBC[75],APSSC[76],
SETRED [77], SNNRCE [78], various regression types
(LDA, logistic, and others), several types of neural networks
and versions of basic supervised methods (C45, Nearest
Neighbor (NN), Naive Bayes (NB), and Support Vector
Machine (SVM)) for use with semi-supervised datasets.

Experimental work can be performed using cross vali-
dation in KEEL. The 10-fold cross validation consists of
dividing the dataset into 10 equal randomly generated folds,
9 of the 10 are used for training and the other for testing. In
that case, 10 different experiments are run, each time using a
different fold for testing and the results are averaged. Using
5×2-fold cross validation, the dataset can be divided into
two equal parts. In that case, half of the instances are used
for training and the other half for testing. Five different (ran-
dom) splits are generated for the experiment and the average
of the results is calculated.

3 Methodology

A series of experiments were conducted using various
datasets that varied in the number of labeled and unlabeled
instances, to evaluate the effectiveness of SSL algorithms
within KEEL for diagnosing real-world problems with mul-
tiple classes. The output of a reference supervised algorithm

was computed using only the labeled instances in each
dataset, to evaluatewhether theSSLapproach improvedupon
the results of the SL approach.

3.1 Semi-supervisedmethods

KEEL implements several SSL algorithms. Some of these
algorithms require a base classifier to be specified, usually
a simple one. KEEL uses the well-known base classifiers
C45, NB, NN and SMO1. For example, Self-training, Co-
Training, and some variants such as RASCO, Rel-RASCO,
andCoBC, among others, require one ormore base classifiers
to be specified.

A total of 209 algorithms and algorithm combinations
were trained and tested for each different dataset. Most of the
cases corresponded to the Co-Training algorithm, as 3 differ-
ent or equal base classifierswere selected for the Co-Training
implementation in KEEL, so all possible combinations could
be tested. The best resultswere obtained using aC45 decision
tree as the base classifier in combination with Co-Training,
Rel-RASCO and CoBC, which cover all the different kinds
of Co-Training implemented in KEEL. These algorithms are
described in greater detail below.

Co-Training [68] is a sort of bootstrapping, with which a
large number of unlabeled instances are used in an attempt
to improve the performance of a learning algorithm when a
small set of labeled instances is available. One assumption of
Co-Training is that the dataset has to be split into two views
(instance features are split into two subsets) and both views
must be sufficient for learning. Two learning algorithms are
separately trained on each view and, the predictions of each
algorithm on unlabeled instances are used to extend the train-
ing set of the other algorithm.

Formally, an instance space is divided into two differ-
ent sets of features (views) X = X1 × X2 and each view
is supposed to be sufficient for correct classification. Let
D be a distribution over X and C1, and let C2 be classes
defined over X1 and X2, respectively. A target function
f = ( f1, f2) ∈ C1 × C2 is termed compatible with D, if
D assigns 0 probability to the set of instances (x1, x2) that
f1(x1) �= f2(x2). The distribution, D, can be represented
as a weighted bipartite graph, GD(X1, X2), where an edge,
(x1, x2), exists, if and only if the instance, (x1, x2), has non
zero probability under D. That same probability is attached
to the edge weight. The authors assume a fully compatibil-
ity scenario where the two views of an instance are equally
labeled by the two functions, f1 and f2, (7) and where � is

1 Instead of using the usual acronym SVM to refer to Support Vector
Machines, it is replaced in KEEL with the one corresponding to the
SVM training algorithm. As KEEL uses the Sequential MinimumOpti-
mization algorithm, SMO acronym is used instead of the standard SVM
acronym.
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the set of defined labels.

∀x1 ∈ X1,∀x2 ∈ X2, f1(x1) = f2(x2) = l, (l ∈ �), (7)

In the same way, a graph, GS , is defined for the unlabeled
set of instances, S, as a bipartite graph with an edge (x1, x2)
for each (x1, x2) ∈ S. Basically, two instances connected to
the same component (the same values in x1) in S must be
equally labeled.

The hypothesis ofBlumet al. in [68] is as follows: given an
assumption of conditional independence in the distribution,
D, if the target class can be learned from random classifica-
tion noise in the PAC [79] learning model, then Co-Training
can improve any initial weakly learnedmodel, to achieve any
arbitrarily high accuracy using unlabeled instances. How-
ever, minimizing the empirical error on the instances labeled
by the weak predictor may not minimize the true error.

Also, the assumption that instances (x1, x2) showing
f1(x1) �= f2(x2) will never appear can be relaxed. It will
be sufficient if (8) is fulfilled.

p[ f1(x1)=1, f2(x2) = 1] × [ f1(x1) = 0, f2(x2) = 0] >

p[ f1(x1)=1, f2(x2) = 0]×[ f1(x1) = 0, f2(x2) = 1]+δ.

(8)

The Co-Training example described in [68] used the same
classifier (an NB classifier) for both views. Certain parame-
ters had to be set: namely, the number, p, of positive labeled
instances selected and the number, n, of negative instances
selected in each iteration (the example was a binary classi-
fication), the number k = 30 of iterations, and the number
u = 75 of unlabeled instances selected from the unlabeled
set U . The authors proposed the use of a subset U ′ ⊂ U
for pseudo-labeling, as it had shown better performance in
empirical tests. Each classifier selects the most confident n
and p instances classified fromU ′, which together with their
predicted label are added to the labeled set of the other algo-
rithm. At each iteration, the subset of U ′ is completed after
randomly extracting 2n + 2p instances from the set U .

The algorithm implemented in KEEL was a variation of
the above algorithm. A parameter, p, that establishes the
number of instances to be selected can be activated in KEEL,
as well as the parameters k and u. Perhaps the greatest vari-
ation is that 3 classifiers can be selected. The third classifier
is used for computing the results of each iteration.

The idea underlying Co-training is that, by using two
views of the same dataset, if both unlabeled and labeled
instances are also used together, then the number of labeled
instances needed to obtain an accurate classifier can be
reduced.

However,maintaining the conditional independence between
both views, as is required when just one dataset is available,
can be difficult in practice. Somemodifications to the original

Co-Training algorithm have been proposed, in order to over-
come that problem. RASCO (Random Subspace Method for
Co-training) [69] is a multiview Co-Training method that
obtains different feature splits with the random subspace
method. If there are n features in the instances of the dataset,
random subspaces of dimension m (m < n) are selected.
Then, the set of labeled instances, L , is projected into the
subspace of m dimensions (Lsub). This process is repeated
K times, so K different views of the feature space are cre-
ated (Lsubk with 1 ≤ k ≤ K ) and K different classifiers are
trained, each with a different view of the dataset.

RASCO can improve the results on datasets with many
features and achieve lower errors than the traditional Co-
Training algorithm [69]. However, when there are many
irrelevant features, RASCOmay not choose the best features
to produce a good classifier. Rel-RASCO (Relevant Random
Subspace Method for Co-training) [70] scores features to
overcome this problem, using mutual information between
features and classes (labels). Feature selection is performed
based on probabilities that depend on relevance scores, to
maintain randomness.

CoBC [75] is a special kind of Co-Training. A two-view
approach is used in CoBC to improve results by combining
the tree-structured (ensemble) approach and Co-Training. It
can be especially useful for improving classification when
a large number of classes and low volumes of labeled data
are involved. CoBCwas designed for classification problems
with four characteristics: (i) sufficient redundant views may
be defined; (ii) there is a large number of classes (�); (iii)
there are a few labeled instances; and (iv) there are large
number of unlabeled instances. CoBC entails combining a
tree structure and Co-Training in two ways. On one hand, a
co-train-of-trees is defined as an ensemble of binary Radial
Base Function (RBF) networks trained on each view. Then
unlabeled instances are labeled and themost confident one(s)
is(are) added to the training dataset of the other decision tree
classifier(s).On the other hand, a co-training tree is defined as
aK-class problemdecomposed into a (K-1)-class binary class
problemusing a tree structure. Then, a binaryRBFnetwork is
trained on each view to solve the binary problems. Instead of
just traversing the decision tree and pseudo-labeling with the
predicted class, it uses a method based on Dempster-Shafer
evidence theory [80, 81] for obtaining a combination based
on probabilities of the intermediate results of the internal
nodes within the decision trees. In this method, not only do
classifiers on the path from the root to the leaf node of the
decision tree contribute to the estimation of the class prob-
ability, but all classifiers that are not on the path can also
contribute.

KEEL CoBC uses an ensemble approach to SSL and one
of two different types of ensembles may be selected: a boost-
ing method (Adaboost) and a bootstrap method (Bagging).
Both ensembles need a base learning algorithm, and the pre-
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viously mentioned base classifiers C45, NN, and SMO can
be selected.

3.2 Supervisedmethod

Supervised SVMs obtained the best results for the wind-
turbine dataset in [5], which was therefore the supervised
algorithm used for comparison. KEEL includes an imple-
mentation of the SMO (Sequential Minimum Optimization)
algorithm [82] for training an SVM that can be used with
semi-supervised datasets. The KEEL SMOSSL algorithm
basically filters out unlabeled instances and only uses the
labeled ones to train an SVM with the SMO algorithm,
thereby permitting the same semi-supervised dataset to be
used as an input for the supervised algorithm. The balance
between classes is a major requirement in the datasets, to
assure proper comparison with supervised techniques [9].

4 Experiment description and results

In this section, the test-bed platform and the different semi-
supervised datasets are briefly described, as well as the
algorithms with the best results.

4.1 Platform and data description

The experimental dataset was obtained using a test-bed to
simulate the behaviour of wind turbines under faulty opera-
tional conditions. The test-bed (Fig. 2) consisted of two parts:
the first was an electrical drive, a parallel gearbox (fast shaft),
and a planetary gearbox (slow shaft), which simulated the
powertrain of a real wind turbine. These components were
connected to the second part, composed of a two-stage plan-
etary gearbox and a brake with which wind conditions were
simulated. Datawere collected and recorded using seven sen-
sors. Four of them were ICP accelerometers that measured
axial and radial vibration signals from the two gearboxes.
Another three sensors measured the current, the torque of the
electrical drive, and the rotation speed. The test-bed design

simulated misalignments on both parts of the test-bed for
generating and measuring in degrees one of the two failure
modes: misalignment of the powertrain. The other failure
mode of interest was linked to imbalance failures of the
fast shaft, due to damaged bearings and raceways. The dam-
age was measured in grams. Data for four different damages
were generated using the test-bed. Simulations of both failure
modes reflected progressive degradation of the wind-turbine
powertrain using two levels for misalignment and four levels
for imbalance. Although the presence of both failures at the
same time was considered uncommon, it was also simulated
and included in the dataset. Wind conditions were simulated
by means of random profiles of speed (between 1000 and
1800 rpm) and load (from 0 to 100%) which covered the
range of real working conditions. Each working condition
was run 100 times. Each run lasted for 72 seconds and the
sampling frequency was 25600 Hz. Each run of 72 seconds
generated an instance. The test-bed, data collection process,
and signal treatment are explained in more detail in [8] and
[83], respectively.

Failure types and number of instances of each failuremode
in the initial dataset are shown in Table 1. The dataset was
composed of 6551 instances obtained under different work-
ing conditions. Each instance was composed of 544 features
or variables, containing information on the operational state
(torque, speed, electric input and output currents), informa-
tion on vibrations from the accelerometers, such as energy
distribution statistics (average, root mean square, skewness,
kurtosis, and interquartile range), energy in standard fre-
quency bands, and in the harmonics of the rotating speed.

4.2 Experiment design

In all, 10 different semi-supervised datasets were generated
from the initial dataset. The original dataset was randomly
divided into two halves: one for training and the other for
testing. Training instances were randomly selected for label
removal. A different percentages of labeled instances, rang-
ing between 2% and 40%, were retained in each dataset.
The unlabeling process was performed in a stratified man-

Fig. 2 Scheme of the
wind-turbine test-bed

123



4534 J. A. Maestro-Prieto et al.

Table 1 Dataset description Id. Misalignment Bearings imbalance Instances Percentage

1 No misalignment No imbalance 887 13.54%

2 No misalignment Imbalance of 5.79 g 847 12.94%

3 No misalignment Imbalance of 9.13 g 856 13.07%

4 No misalignment Imbalance of 19.5 g 838 12.79%

5 No misalignment Imbalance of 28.8 g 864 13.19%

10 Misalignment of 0.78o No imbalance 872 13.31%

20 Misalignment of 1.53o No imbalance 835 12.75%

25 Misalignment of 1.53o Imbalance of 28.8 g 552 8.43%

The first column contains a numerical identifier for the faults, which are used to label the instances. The
second and third columns are textual descriptions of the failure types, which include the misalignment angle
(in degrees) and the imbalance weight (in grams). The fourth column and fifth columns, respectively, show the
number of instances of each failure type and the percentage over all instances in the dataset. The combination
no misalignment-no imbalance in the first row represents the no failure condition

ner, taking into account the failure modes and the number
of instances of each failure mode in the dataset to main-
tain representativeness. Labeled instances for each dataset
were chosen independently, so that different semi-supervised
datasets could not share common labeled instances. 5×2-fold
cross validation experiments were performed. Thus, for each
percentage of labeled instances, five different training and
test files were created, and the results were averaged.

In Table 2, the number of labeled and unlabeled instances
are summarized that constitute the 10 different semi-supervised
datasets generated by randomly selecting the corresponding
percentage of labeled instances and unlabeling the rest.

4.3 Results and discussion

Table 3 shows the best results of the semi-supervised algo-
rithms for each dataset and the results obtained with the

Table 2 Description of the different datasets generated for SSL

Percentage of Number of labeled Number of unlabeled
labeled instances instances instances

2% 65 3210

3% 98 3177

4% 131 3141

5% 164 3111

6% 196 3079

10% 327 2948

14% 458 2817

20% 655 2620

30% 982 2293

40% 1310 1965

The first column represents the percentage of labeled instances; the
second column, the number of labeled instances; and the third shows
the number of unlabeled instances for each trainingdataset. Tendifferent
datasets from 2% to 40% of labeled instances were generated

supervised benchmark algorithm. The first column contains
the percentage of labeled dataset instances, ranging from
2% to 40%. The second column contains the result obtained
with the SMOSSL algorithm, used as the supervised bench-
mark. The next four columns contain the results obtained
with the SSL algorithms: Co-Training, Rel-RASCO, CoBC
using Adaboost, and Bagging ensembles. All SSL algo-
rithms yielded the best result using the C45 algorithm as
the base classifier. The bold numbers are the best result
for each dataset. As can be seen, for datasets with fewer
labeled instances, no more than 10%, the highest accuracy
was obtained using some SSL algorithm. For datasets labeled
10% or more, the supervised SMO (SVM) algorithm, which
was used as a benchmark for comparison, yielded the highest
accuracy.

The data in Table 3 are plotted in Fig. 3. As can be seen in
the figure, the SMO algorithm performed poorly on datasets
with fewer labeled instances, although it outperformed all
SSL algorithms, at 10% and above of labeled instances. The
SMOalgorithmusing the 40% labeled dataset produced com-
parable results to those shown in [9] using the fully labeled
dataset. It can also be seen from the figure that no SSL algo-
rithm was systematically better than the others, although the
differenceswere not very important and sometimes even neg-
ligible.

It is worth noting the differences between the results of
the SSL algorithms, which were greater when using the 2%
labeled dataset. The Co-Training algorithm and the CoBC-
Bagging algorithm, respectively, yielded the best and the
worst results for that dataset. However, despite still using
a small number of labeled instances, the disparity of the
results tended to diminish as from the above-mentioned per-
centage, and similar results were obtained for all the SSL
algorithms. Focusingon theSSLalgorithms, despite the com-
bination of base classifiers that were tested, the best results
were obtained with the Co-Training algorithm or some vari-

123



Semi-supervised diagnosis of wind-turbine... 4535

Table 3 Accuracy of the
different algorithms in
percentages

Supervised Semi-supervised methods
Labeled SMOSSL Co-Training1 Rel-RASCO CoBC CoBC
instances (Reference) C45C45C45 C45 Adaboost-C45 Bagging-C45

2% 51.00% 79.05% 77.65% 65.44% 71.43%

3% 59.69% 78.96% 81.04% 79.02% 78.53%

4% 71.98% 81.26% 79.96% 83.36% 82.68%

5% 75.96% 82.74% 80.89% 81.68% 80.89%

6% 79.24% 83.25% 83.36% 83.85% 84.02%

10% 87.04% 84.96% 85.66% 85.81% 86.45%

14% 91.01% 86.45% 86.00% 86.55% 86.45%

20% 94.31% – 87.89% 88.83% 88.40%

30% 96.24% 89.67% 89.66% 90.23% 89.96%

40% 97.73% 90.42% 89.97% 91.01% 90.95%

Each row represents the results, using a different percentage of labeled instances, ranging from 2% to 40%
1 Co-Training produced no results with files containing 20% of labeled instances.The algorithm had been
running for a week when it was decided to stop the process, even though the first of the five folds had yet to
be completed

ant (Rel-RASCO, CoBC) combined with the C45 decision
tree. It was also interesting that the best results for the SSL
algorithms included approaches that used (boosting and bag-
ging) ensembles.

The SSL methods achieved 91% accuracy with 40%
labeled instances in the training set, and the SL method
achieved 97.7% accuracy using only the labeled instances
in the semi-supervised training set.

The supervised SMO algorithm obtained better results
than the SSL algorithms above 10% of labeled instances
(327) in the dataset. In this specific problem, if they repre-
sent the different normal and abnormal working conditions,
having more than 327 labeled instances, the best results can
be obtained using an SMO (SVM) algorithm, regardless of
the number of available unlabeled instances.

Figure 4 shows the different confusionmatrices for thefive
algorithms and the 10% labeled dataset. A logarithmic scale
was used to color the confusion matrices for better visibility.

As can be seen, in general, themisaligned cases (identified
as 10 and 20) and the mixed case (identified as 25) are gener-
ally correctly identified with high accuracy. The imbalanced
bearing cases are more complex and the test instances are
less accurately identified. This problem is important, because
bearings with less imbalance (identified as 1, 2, or 3) may
not require preventive maintenance. However, bearings with
more imbalance (identified as 5 and 6) may require repair
work quickly, so accurate diagnosis is important. Figures 4b,
4c and 4d appear to show a more accurate diagnosis of the
instances identified as 4 and 5 than Fig. 4a, particularly for
case 5.

Fig. 3 Accuracy in percentages
of each algorithm in Table 3, for
each dataset with a different
percentage of labeled instances
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Fig. 4 Confusion matrices for the results of the different algorithms trained using the 10% labeled dataset. The numbers on each figure axis refer
to the different types of faults that are described in Table 1. Logarithmic color scaling is used to aid visualization

Table 4 Computation time (in
seconds) of the training and
testing process for the different
algorithms in Table 3

Supervised Semi-supervised methods
Labeled SMOSSL Co-Training Rel-RASCO CoBC CoBC
instances (Reference) C45C45C45 C45 Adaboost-C45 Bagging-C45

2% 10.8 s 143.4 s 189.9 s 67.0 s 253.8 s

40% 132.3 s 300.2 s 3060.6 s 259.1 s 6702.1 s

The first row shows the different computation times for the dataset containing 2% labeled instances and the
second row shows the different computation times for the dataset containing 40% labeled instances
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Table 4 shows the computation time, in seconds, for
training and testing the algorithms in Table 3. The table
contains the computation times for the dataset with 2%
labeled instances and the dataset with 40% labeled instances.
Substantially different computation times were observed,
depending on both the different algorithms and the number
of labeled instances in the datasets. As expected, training the
algorithms using the less labeled datasetwas faster than using
the most labeled dataset. All algorithms required more com-
putational time for model training as more labeled instances
were included in the training dataset. A great difference was
also noticeable among the algorithms, even when the same
dataset was used. The fastest algorithm was 25 times faster
than the slowest algorithmwhen using the 2% labeled dataset
and about 50 timeswhen using the 40% labeled dataset.How-
ever, accuracy (the metric used to compare the results of
different models using the same subset of tests) remained
comparable, despite the apparent difference in the computa-
tion times that were needed to train the model.

The lower percentages of labeled instances in the dataset
may fall within what are considered extremely limited and
small samples in [65, 66]. Two percent of labeled instances
are less than 10 instances per class type in the dataset,
which can also be considered an extremely limited number
of labeled samples. Moreover, 3%-6% of labeled instances
are fewer than 30 instances per class in the dataset, which
can be considered a small number of labeled samples.

Although each SSL proposal in [14–16], and [17] was
related to a different failure mode, some brief comparisons
will help us to assess the potential of the SSL approach when
used for FDD in wind turbines.

Macro and micro F1 scores were calculated in relation
to the dataset containing 10% labeled instances, for a fair
comparison with the proposal in [14]. The scores are shown
in Table 5. When facing a multi-class classification prob-
lem, there are at least two ways to calculate the metric score:
calculate the metric for each class separately and average
the results across classes (macro- average), or calculate only
a global metric without taking into account whether each
instance belongs to one class or another (micro-average).
Both provide a slightly different measure with its own
interpretation. In a dataset with class imbalance, it is recom-
mendable to usemicro-averagemetrics. Themacro andmicro
F1 scores were calculated by averaging the results obtained
from the KEEL outputs for the five folds using the Python

scikit-learn library. The macro and micro F1 scores for
each algorithm were very similar. The models trained using
SMOSSL, Co-Training, Rel-RASCO, and CoBC-Adaboost
obtained values for the macro and micro F1 scores that fell
within the range of values reported in [14] for diagnosing
wind-turbine blade faults. The macro and micro F1 scores
of the model trained with the CoBC-Bagging algorithm fell
outside that range.

Both [15] and [16] used a SpectraQuest WTDS plat-
form to obtain the dataset for training and testing their
respective proposals. In [15], the result of a five class semi-
supervised gear problem was reported, which was solved
using its own pseudo-labeling process. A 99.38% accuracy
level was reported using 230 labeled and pseudo-labeled
instances. In [16], the results of a solution to a four class,
semi-supervised bearing fault using an SVM algorithm were
reported. Twenty out of 320 instances were unlabeled and
100% accuracy was obtained. In our case, the results using
the 10% labeled dataset were not even close to those results,
however, the 10% labeled dataset had fewer labeled instances
per class, as the problem to be solvedwas an eight-class prob-
lem where the last class was a mix of the two failure types
that had been diagnosed. It is interesting that the best results
were also obtained for SVM in [16]. Finally, it should be
outlined that the proposed scenario of unlabeled levels and
dataset imbalance influenced the results. Most authors have
sought to avoid both problems at the same time or tomaintain
soft conditions (low imbalance or low labeling rates), some
way off real industrial conditions, so the door remains open
to new research to find ML solutions that can be applied to
both unlabeled levels and dataset imbalance problems at the
same time.

In [17], the high complexity of the proposal to detect faults
within the pitch system of wind turbines made comparisons
difficult. The False Positive Rate (FPR) and False Negative
Rate (FNR)were themetrics chosen for comparing the differ-
ent alternatives of its four-class problem. Furthermore, each
comparison was separately performed for each fault class
with respect to the non-fault class.

FPR is an accuracy metric that calculates the rate of false
positives out of all negatives. FPR is defined in (9).

FPR = FP

FP + T N
(9)

Table 5 Micro and macro F1
scores computed for 10%
labeled instances dataset for the
different algorithms shown in
Table 3

Supervised Semi-supervised methods
SMOSSL Co-Training Rel-RASCO CoBC CoBC

Metric (Reference) C45C45C45 C45 Adaboost-C45 Bagging-C45

Micro-F1 0.87 0.84 0.85 0.85 0.71

Macro-F1 0.87 0.85 0.86 0.86 0.71
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Table 6 Macro and micro FPR
and FNR average scores
computed for 10% labeled
instances dataset for the
different algorithms in Table 3

Supervised Semi-supervised methods
SMOSSL Co-Training Rel-RASCO CoBC CoBC
(Reference) C45C45C45 C45 Adaboost-C45 Bagging-C45

Metric FPR FNR FPR FNR FPR FNR FPR FNR FPR FNR

Micro 0.02 0.13 0.02 0.15 0.03 0.22 0.02 0.14 0.02 0.14

Macro 0.02 0.12 0.02 0.15 0.03 0.21 0.02 0.14 0.02 0.13

FNR is an accuracy metric that calculates the rate of false
negatives out of all negatives. FPR is defined in (10).

FN R = FN

FN + T N
(10)

Instead of calculating each of the eight FPR and FNR val-
ues for each of thefive algorithms for the 10% labeled dataset,
micro and macro FPR and FNR scores were calculated for
each of the algorithms, as it would in any case be difficult
to compare a four-class problem and an eight-class problem.
Furthermore, rather than providing exact numerical values,
separate boxplots were provided in [17], for each failure
mode and for 5% and 10% of instances with labeled failures.

Each of the three failure modes was represented with a set
containing between 1158 and 2144 instances and 24 features.

The macro and micro FPR and FNR scores of the 10%
labeled dataset are shown in Table 6 for each algorithm in
Table 3. In general, it can be said that FPR values in Table 6
were lower than those shown in [17], as all the algorithms
shown in Table 6 yielded very low values ranging between
0.02 and 0.03, whereas those shown in [17] ranged between
0.03 and 0.05 for the 10% labeled datasets when using the
ssODM-DSTA approach. On the other hand, FNR values for
the ssODM-DSTA approach were lower (between 0.05 and
0.07) than the values shown inTable 6,which ranged between
0.12 and 0.22.

Fig. 5 Recall, precision and F1 score metrics for the different algorithms and percentages of labeled instances in the datasests
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As shown in Fig. 5, several metrics other than accuracy,
such as recall, precision, and F1 score, all micro-versions,
presented similar patterns to the accuracy metrics (Fig. 3).
The behavior of the semi-supervised methods was clearly
better with lower percentages of labeled instances in the
datasets. Consistent with the results obtained using the accu-
racy metric, for the dataset containing 10 percent labeled
instances, the results obtained for the supervised SMOSSL
algorithm outperformed the semi-supervised algorithms for
high-labeled datasets (>10%), but not for low-labeled
datasets (<10%), so that 10% of labeled instances were a
trend at a crossroads that was likely to change.

Training time is also a parameter to be taken into account
in ML techniques, due to energy consumption reduction
requirements, and it is becoming increasingly relevant in
computing [84]. Figure 6 shows the learning times of the
different algorithms tested for each percentage of labeled
instances in the datasets. As can be seen, the supervised
SMOSSLand the semi-supervisedCoBC-Adaboost-C45 and
Co-Training-C45C45C45 algorithms took a very low linear
learning time, and generated a very gentle slope on the results
curve. Although learning algorithms can show very different
behavior in learning time depending on the set of instances,
in this particular case, an increase in the number of labeled
instances appeared to yield a small increase in learning time.
However, the same behavior was not observed when using
the semi-supervised Rel-RASCO-C45 and CoBC-Bagging-
C45 algorithms. The increment in learning time was greater,
as the number of labeled instances increased. And clearly,
the learning time of the CoBC-Bagging-C45 algorithm was
longer than that of the Rel-RASCO-C45 algorithm. If the
time needed to train a model with an algorithm were more
important than the accuracy it achieved, it might be better not
to choose one of the slowest algorithms, as accuracy (and the
other metrics) are close for all semi-supervised algorithms
for almost all percentages of labeled instances.

Fig. 6 Computing time for the different algorithms and percentages of
labeled datasets

Fig. 7 Polar plots for the results of using the 10% of labeled instances
dataset

Finally, as a summary of algorithm performance, Figure 7
shows the polar plot containing the accuracy, F1 score, recall
and precision metrics and the average fold learning time for
the 10% labeled instances dataset. The natural logarithmwas
taken for the learning times and then the values were scaled
down to values between 0 and 1, to keep the same propor-
tions as the other axes. As can be seen, the results of the
scores for each axis are very close for all algorithms for each
dataset, and the main differences occur on the time axis. The
SMOSSL algorithm had the shortest learning time, and there
was a clear difference in learning time for the different algo-
rithms, with the CoBC-Bagging-C45 algorithm having the
largest learning time.

5 Conclusions

Although competitive results have been achieved with SSL
approaches that are very close to those obtained with
more conventional supervised approaches, not many SSL
approaches have been found in recent reviews specifically
for wind turbine FDD. Therefore, recent approaches are
reviewed and described along with more SSL approaches for
wind turbine component FDD for related problems.A greater
focus on semi-supervisedmethods wouldminimize the num-
ber of instances required in the datasets, the time-consuming
collection of instances, tiresome human labeling processes,
and the time needed to run sufficient simulations. The train-
ing time of ML proposals could therefore be reduced, while
still achieving sufficient accuracy and competitive solutions.

A concise overview of recent approaches towards FDD
in wind turbines, as well as in their associated parts and
components, has been provided. As wind turbines have been
gaining increasing attention over recent years, it is worth
mentioning that some wind-turbine problems have received
more attention than others. Literature and semi-supervised
methods proposed for FDD in bearings are abundant, while
they are scarce for gearboxes and transmissions. In addition,
there are few semi-supervised FDD proposals that include
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more than one type of failure. First, regarding the problem
of FDD imbalanced bearings and gearbox misalignment.

Regarding the problem of FDD imbalanced bearings and
gearbox misalignment, labeling between about 2% of the
training instances (65 instances) and 10% of the training
instances (327 instances) can be reasonable for a real-world
problem, and can produce a model whose accuracy varies
between 79.05% and 86.45%, in an eight-class classification
problem. It makes the SSL approach viable for real-world
industrial problems when a very limited number of labeled
instances and additional unlabeled instances are available.
Using up to 40% labeled instances in the dataset, the accu-
racy levels were as high as 91% using the SSL approach
and up to 97.7% using the SL approach. If there were 10% or
more labeled instances in the training set, then the supervised
SMO method outperformed the tested SSL methods.

Similar and consistent results were obtained using differ-
ent metrics. However, the learning times showed the greatest
differences between the different learning algorithms.

In this problem, the SSL approach obtained better results
when therewere fewer labeled instances in the dataset (below
10% of labeled instances with the rest unlabeled).

Therefore, the use of unlabeled instances may help to
improve the results obtained with SL methods, using only
the corresponding subset of labeled instances.

Furthermore, no SSL algorithm is consistently better than
the others, when using these semi-supervised datasets. As
shown in Table 3, even though different SSL algorithms
achieved slightly different accuracies on different datasets,
the behaviour was generally similar and homogeneous.

It should be noted that there can be a clear and noticeable
difference in the computational time required to train the
various learning algorithms (Table 4). As expected, a clear
difference in the training time required as a function of the
number of labeled instances in the dataset was found: more
labeled instances implied more training time. Furthermore,
differences of up to 50 times the time taken by the slow-
est algorithm with respect to the fastest algorithm have been
observed using the same dataset. However, this latter differ-
ence in computation times produced no large difference in
accuracy when testing the corresponding models.

Finally, a 40% labeled subset of the training set was able to
generate a supervised SMO model (SVM) that achieved an
accuracy comparable to that of the model proposed in [9]
(also an SVM). That model was generated with an SL
approach, using 100% of the labeled training set instances.

Thus, it may be worth trying to use a smaller subset of the
training set and to evaluate the results whenever the learning
algorithm either takes too long to train the model or requires
too much memory. In any case, SSL algorithms have shown
their capability to process a complex industrial failure detec-
tion problem in a wind-turbine power train under 7 failure
modes of 2 different types where labeled instances are rare,

but unlabeled conditions are extensively available. Therefore,
they can be useful to extend the accuracy of standard super-
vised ML models, although the effect of imbalance in the
training dataset (few instances of failure conditions versus
many instances of normal conditions) should still be simul-
taneously evaluated with high levels of unlabeled instances.
Unfortunately, the dataset used in this research was not suf-
ficiently extensive to test both industrial requirements at the
same time.

Further experiments could be carried out with these
datasets. First, it would be interesting to explore the impor-
tance of having imbalanced datasets and the impact on the
calculated metrics. Secondly, it should be tested whether
the number of classes can affect the calculated metrics. It
was also found that the most difficult problem is dealing
with imbalanced bearings, a subject that may deserve more
attention and testing of alternative and specific solutions. For
instance, the use of deep learning techniques might be a suit-
able solution, offering the chance to avoid the pre-processing
stage, due to the capabilities of thesemethods to extract com-
plex information from extensive raw datasets.
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