Por favor, use este identificador para citar o enlazar este ítem: http://hdl.handle.net/10259/10492
Título
Time Series Sensor Data for Cutting Fluid Analysis from the SmarTaladrine Project
Autor
Editorial
Universidad de Burgos
Fecha de publicación
2025-05-19
Cobertura temporal
start=2024-12-17; end=2025-04-01
DOI
10.71486/w044-c137
Resumen
This dataset provides multivariate time series data from sensors monitoring a cutting fluid (taladrina) test tank, collected as part of the "SmarTaladrine" project. The primary monitored variables are pH, Temperature, Concentration, and Conductivity. The data spans from December 17, 2024, to April 1, 2025. The dataset includes a raw, preprocessed version of these four variables, which contains missing values as originally observed. Additionally, for each of the four primary variables, separate files are provided showcasing the results of imputing these missing values using five different methods: a pre-trained MOMENT model, a fine-tuned MOMENT model, an LSTM-based Variational Autoencoder (LSTM-VAE), K-Nearest Neighbors (KNN), and a hybrid KNN-Clustering method (HybridKCL). This dataset is intended for developing and evaluating models for cutting fluid analysis, anomaly detection, predictive maintenance, and for benchmarking time series imputation techniques within industrial machining contexts.
Palabras clave
Cutting fluid
Taladrina
Time series
Sensors
Imputation
Data analysis
Predictive maintenance
Anomaly detection
Materia
Lubricantes
Lubrication and lubricants
Proceso de datos
Electronic data processing
Aparece en las colecciones