Universidad de Burgos RIUBU Principal Default Universidad de Burgos RIUBU Principal Default
  • español
  • English
  • français
  • Deutsch
  • português (Brasil)
  • italiano
Universidad de Burgos RIUBU Principal Default
  • Ayuda
  • Contacto
  • Sugerencias
  • Acceso abierto
    • Archivar en RIUBU
    • Acuerdos editoriales para la publicación en acceso abierto
    • Controla tus derechos, facilita el acceso abierto
    • Sobre el acceso abierto y la UBU
    • español
    • English
    • français
    • Deutsch
    • português (Brasil)
    • italiano
    • español
    • English
    • français
    • Deutsch
    • português (Brasil)
    • italiano
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    Listar

    Todo RIUBUComunidadesFechaAutor / DirectorTítuloMateria / AsignaturaEsta colecciónFechaAutor / DirectorTítuloMateria / Asignatura

    Mi cuenta

    AccederRegistro

    Estadísticas

    Ver Estadísticas de uso

    Compartir

    Ver ítem 
    •   RIUBU Principal
    • E-Prints y Datos de investigación
    • Grupos de investigación
    • Inteligencia Computacional Aplicada (GICAP)
    • Artículos GICAP
    • Ver ítem
    •   RIUBU Principal
    • E-Prints y Datos de investigación
    • Grupos de investigación
    • Inteligencia Computacional Aplicada (GICAP)
    • Artículos GICAP
    • Ver ítem

    Por favor, use este identificador para citar o enlazar este ítem: http://hdl.handle.net/10259/3858

    Título
    RT-MOVICAB-IDS: Addressing real-time intrusion detection
    Autor
    Herrero Cosío, ÁlvaroAutoridad UBU Orcid
    Navarro, Marti
    Corchado, EmilioAutoridad UBU Orcid
    Vicente, Julián
    Publicado en
    Future Generation Computer Systems. 2013, V. 29, n. 1, p. 250–261
    Editorial
    Elsevier
    Fecha de publicación
    2013-01
    ISSN
    0167-739X
    DOI
    10.1016/j.future.2010.12.017
    Resumen
    This study presents a novel Hybrid Intelligent Intrusion Detection System (IDS) known as RT-MOVICAB-IDS that incorporates temporal control. One of its main goals is to facilitate real-time Intrusion Detection, as accurate and swift responses are crucial in this field, especially if automatic abortion mechanisms are running. The formulation of this hybrid IDS combines Artificial Neural Networks (ANN) and Case-Based Reasoning (CBR) within a Multi-Agent System (MAS) to detect intrusions in dynamic computer networks. Temporal restrictions are imposed on this IDS, in order to perform real/execution time processing and assure system response predictability. Therefore, a dynamic real-time multi-agent architecture for IDS is proposed in this study, allowing the addition of predictable agents (both reactive and deliberative). In particular, two of the deliberative agents deployed in this system incorporate temporal-bounded CBR. This upgraded CBR is based on an anytime approximation, which allows the adaptation of this Artificial Intelligence paradigm to real-time requirements. Experimental results using real data sets are presented which validate the performance of this novel hybrid IDS
    Palabras clave
    Hybrid Artificial Intelligent Systems
    Unsupervised learning
    Artificial Neural Networks
    Multi-Agent systems
    Case-based reasoning
    Computer network security
    Intrusion detection
    Time-bounded deliberative process
    Materia
    Computer science
    Informática
    URI
    http://hdl.handle.net/10259/3858
    Versión del editor
    http://dx.doi.org/10.1016/j.future.2010.12.017
    Aparece en las colecciones
    • Artículos GICAP
    Ficheros en este ítem
    Nombre:
    Herrero-FGCS_2013.pdf
    Tamaño:
    1.021Mb
    Formato:
    Adobe PDF
    Thumbnail
    Visualizar/Abrir

    Métricas

    Citas

    Academic Search
    Ver estadísticas de uso

    Exportar

    RISMendeleyRefworksZotero
    • edm
    • marc
    • xoai
    • qdc
    • ore
    • ese
    • dim
    • uketd_dc
    • oai_dc
    • etdms
    • rdf
    • mods
    • mets
    • didl
    • premis
    Mostrar el registro completo del ítem