Universidad de Burgos RIUBU Principal Default Universidad de Burgos RIUBU Principal Default
  • español
  • English
  • français
  • Deutsch
  • português (Brasil)
  • italiano
Universidad de Burgos RIUBU Principal Default
  • Ayuda
  • Contacto
  • Sugerencias
  • Acceso abierto
    • Archivar en RIUBU
    • Acuerdos editoriales para la publicación en acceso abierto
    • Controla tus derechos, facilita el acceso abierto
    • Sobre el acceso abierto y la UBU
    • español
    • English
    • français
    • Deutsch
    • português (Brasil)
    • italiano
    • español
    • English
    • français
    • Deutsch
    • português (Brasil)
    • italiano
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    Listar

    Todo RIUBUComunidadesFechaAutor / DirectorTítuloMateria / AsignaturaEsta colecciónFechaAutor / DirectorTítuloMateria / Asignatura

    Mi cuenta

    AccederRegistro

    Estadísticas

    Ver Estadísticas de uso

    Compartir

    Ver ítem 
    •   RIUBU Principal
    • E-Prints y Datos de investigación
    • Grupos de investigación
    • Ingeniería Automecánica (iAM)
    • Artículos iAM
    • Ver ítem
    •   RIUBU Principal
    • E-Prints y Datos de investigación
    • Grupos de investigación
    • Ingeniería Automecánica (iAM)
    • Artículos iAM
    • Ver ítem

    Por favor, use este identificador para citar o enlazar este ítem: http://hdl.handle.net/10259/4270

    Título
    An SVM-Based classifier for estimating the state of various rotating components in agro-industrial machinery with a vibration signal acquired from a single point on the machine chassis
    Autor
    Ruiz González, RubénAutoridad UBU Orcid
    Gómez Gil, Jaime
    Gómez Gil, Francisco JavierAutoridad UBU Orcid
    Martínez-Martínez, Víctor
    Publicado en
    Sensors. 2014, V. 14, n. 1, p. 20713-20735
    Editorial
    MDPI
    Fecha de publicación
    2014-11
    ISSN
    1424-8220
    DOI
    10.3390/s141120713
    Resumen
    The goal of this article is to assess the feasibility of estimating the state of various rotating components in agro-industrial machinery by employing just one vibration signal acquired from a single point on the machine chassis. To do so, a Support Vector Machine (SVM)-based system is employed. Experimental tests evaluated this system by acquiring vibration data from a single point of an agricultural harvester, while varying several of its working conditions. The whole process included two major steps. Initially, the vibration data were preprocessed through twelve feature extraction algorithms, after which the Exhaustive Search method selected the most suitable features. Secondly, the SVM-based system accuracy was evaluated by using Leave-One-Out cross-validation, with the selected features as the input data. The results of this study provide evidence that (i) accurate estimation of the status of various rotating components in agro-industrial machinery is possible by processing the vibration signal acquired from a single point on the machine structure; (ii) the vibration signal can be acquired with a uniaxial accelerometer, the orientation of which does not significantly affect the classification accuracy; and, (iii) when using an SVM classifier, an 85% mean cross-validation accuracy can be reached, which only requires a maximum of seven features as its input, and no significant improvements are noted between the use of either nonlinear or linear kernels.
    Palabras clave
    Support Vector Machine (SVM)
    Predictive maintenance (PdM)
    Agricultural machinery
    Condition monitoring
    Fault diagnosis
    Vibration analysis
    Feature extraction and selection
    Pattern recognition
    Materia
    Vehículos
    Vehicles
    Máquinas
    Machinery
    URI
    http://hdl.handle.net/10259/4270
    Versión del editor
    http://dx.doi.org/10.3390/s141120713
    Aparece en las colecciones
    • Artículos iAM
    Attribution 4.0 International
    Documento(s) sujeto(s) a una licencia Creative Commons Attribution 4.0 International
    Ficheros en este ítem
    Nombre:
    Ruiz-Sensors_2014.pdf
    Tamaño:
    1.070Mb
    Formato:
    Adobe PDF
    Thumbnail
    Visualizar/Abrir

    Métricas

    Citas

    Academic Search
    Ver estadísticas de uso

    Exportar

    RISMendeleyRefworksZotero
    • edm
    • marc
    • xoai
    • qdc
    • ore
    • ese
    • dim
    • uketd_dc
    • oai_dc
    • etdms
    • rdf
    • mods
    • mets
    • didl
    • premis
    Mostrar el registro completo del ítem