Universidad de Burgos RIUBU Principal Default Universidad de Burgos RIUBU Principal Default
  • español
  • English
  • français
  • Deutsch
  • português (Brasil)
  • italiano
Universidad de Burgos RIUBU Principal Default
  • Ayuda
  • Contacto
  • Sugerencias
  • Acceso abierto
    • Archivar en RIUBU
    • Acuerdos editoriales para la publicación en acceso abierto
    • Controla tus derechos, facilita el acceso abierto
    • Sobre el acceso abierto y la UBU
    • español
    • English
    • français
    • Deutsch
    • português (Brasil)
    • italiano
    • español
    • English
    • français
    • Deutsch
    • português (Brasil)
    • italiano
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    Listar

    Todo RIUBUComunidadesFechaAutor / DirectorTítuloMateria / AsignaturaEsta colecciónFechaAutor / DirectorTítuloMateria / Asignatura

    Mi cuenta

    AccederRegistro

    Estadísticas

    Ver Estadísticas de uso

    Compartir

    Ver ítem 
    •   RIUBU Principal
    • E-Prints y Datos de investigación
    • Grupos de investigación
    • Advanced Data Mining Research and Bioinformatics Learning (ADMIRABLE)
    • Artículos ADMIRABLE
    • Ver ítem
    •   RIUBU Principal
    • E-Prints y Datos de investigación
    • Grupos de investigación
    • Advanced Data Mining Research and Bioinformatics Learning (ADMIRABLE)
    • Artículos ADMIRABLE
    • Ver ítem

    Por favor, use este identificador para citar o enlazar este ítem: http://hdl.handle.net/10259/5474

    Título
    High-accuracy classification of thread quality in tapping processes with ensembles of classifiers for imbalanced learning
    Autor
    Diez Pastor, José FranciscoAutoridad UBU Orcid
    Gil del Val, Alain
    Veiga, Fernando
    Bustillo Iglesias, AndrésAutoridad UBU Orcid
    Publicado en
    Measurement. 2021, V. 168, 108328
    Editorial
    Elsevier
    Fecha de publicación
    2021-01
    ISSN
    0263-2241
    DOI
    10.1016/j.measurement.2020.108328
    Resumen
    Industrial threading processes that use cutting taps are in high demand. However, industrial conditions differ markedly from laboratory conditions. In this study, a machine-learning solution is presented for the correct classification of threads, based on industrial requirements, to avoid expensive manual measurement of quality indicators. First, quality states are categorized. Second, process inputs are extracted from the torque signals including statistical parameters. Third, different machine-learning algorithms are tested: from base classifiers, such as decision trees and multilayer perceptrons, to complex ensembles of classifiers especially designed for imbalanced datasets, such as boosting and bagging decision-tree ensembles combined with SMOTE and under-sampling balancing techniques. Ensembles demonstrated the lowest sensitivity to window sizes, the highest accuracy for smaller window sizes, and the greatest learning ability with small datasets. Fourth, the combination of models with both high Recall and high Precision resulted in a reliable industrial tool, tested on an extensive experimental dataset.
    Palabras clave
    Bagging
    Imbalanced datasets
    Threading
    Cutting taps
    Quality assessment
    Materia
    Informática
    Computer science
    URI
    http://hdl.handle.net/10259/5474
    Versión del editor
    https://doi.org/10.1016/j.measurement.2020.108328
    Aparece en las colecciones
    • Artículos BEST-AI
    • Artículos ADMIRABLE
    Attribution-NonCommercial-NoDerivatives 4.0 Internacional
    Documento(s) sujeto(s) a una licencia Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 Internacional
    Ficheros en este ítem
    Nombre:
    Diez-measurement_2021.pdf
    Tamaño:
    1.685Mb
    Formato:
    Adobe PDF
    Thumbnail
    Visualizar/Abrir

    Métricas

    Citas

    Academic Search
    Ver estadísticas de uso

    Exportar

    RISMendeleyRefworksZotero
    • edm
    • marc
    • xoai
    • qdc
    • ore
    • ese
    • dim
    • uketd_dc
    • oai_dc
    • etdms
    • rdf
    • mods
    • mets
    • didl
    • premis
    Mostrar el registro completo del ítem