Universidad de Burgos RIUBU Principal Default Universidad de Burgos RIUBU Principal Default
  • español
  • English
  • français
  • Deutsch
  • português (Brasil)
  • italiano
Universidad de Burgos RIUBU Principal Default
  • Ayuda
  • Contacto
  • Sugerencias
  • Acceso abierto
    • Archivar en RIUBU
    • Acuerdos editoriales para la publicación en acceso abierto
    • Controla tus derechos, facilita el acceso abierto
    • Sobre el acceso abierto y la UBU
    • español
    • English
    • français
    • Deutsch
    • português (Brasil)
    • italiano
    • español
    • English
    • français
    • Deutsch
    • português (Brasil)
    • italiano
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    Listar

    Todo RIUBUComunidadesFechaAutor / DirectorTítuloMateria / AsignaturaEsta colecciónFechaAutor / DirectorTítuloMateria / Asignatura

    Mi cuenta

    AccederRegistro

    Estadísticas

    Ver Estadísticas de uso

    Compartir

    Ver ítem 
    •   RIUBU Principal
    • E-Prints y Datos de investigación
    • Grupos de investigación
    • Data Analysis Techniques Applied in health environments sciences (DATAHES)
    • Artículos DATAHES
    • Ver ítem
    •   RIUBU Principal
    • E-Prints y Datos de investigación
    • Grupos de investigación
    • Data Analysis Techniques Applied in health environments sciences (DATAHES)
    • Artículos DATAHES
    • Ver ítem

    Por favor, use este identificador para citar o enlazar este ítem: http://hdl.handle.net/10259/6154

    Título
    Improve teaching with modalities and collaborative groups in an LMS: an analysis of monitoring using visualisation techniques
    Autor
    Sáiz Manzanares, María ConsueloAutoridad UBU Orcid
    Marticorena Sánchez, RaúlAutoridad UBU Orcid
    Rodríguez Diez, Juan JoséAutoridad UBU Orcid
    Rodríguez Arribas, SandraAutoridad UBU Orcid
    Diez Pastor, José FranciscoAutoridad UBU Orcid
    Ji, Yi Peng
    Publicado en
    Journal of Computing in Higher Education. 2021, V. 33, n. 3, p. 747–778
    Editorial
    Springer
    Fecha de publicación
    2021-12
    ISSN
    1042-1726
    DOI
    10.1007/s12528-021-09289-9
    Resumen
    Monitoring students in Learning Management Systems (LMS) throughout the teaching– learning process has been shown to be a very effective technique for detecting students at risk. Likewise, the teaching style in the LMS conditions, the type of student behaviours on the platform and the learning outcomes. The main objective of this study was to test the effectiveness of three teaching modalities (all using Online Project-based Learning -OPBL- and Flipped Classroom experiences and differing in the use of virtual laboratories and Intelligent Personal Assistant -IPA-) on Moodle behaviour and student performance taking into account the covariate "collaborative group". Both quantitative and qualitative research methods were used. With regard to the quantitative analysis, differences were found in student behaviour in Moodle and in learning outcomes, with respect to teaching modalities that included virtual laboratories. Similarly, the qualitative study also analysed the behaviour patterns found in each collaborative group in the three teaching modalities studied. The results indicate that the collaborative group homogenises the learning outcomes, but not the behaviour pattern of each member. Future research will address the analysis of collaborative behaviour in LMSs according to different variables (motivation and metacognitive strategies in students, number of members, interactions between students and teacher in the LMS, etc.).
    Palabras clave
    Online project-based learning
    Visualisation techniques
    Machine learning techniques
    Monitoring students
    Self-regulated learning
    Heat map
    Materia
    Enseñanza superior
    Education, Higher
    Informática
    Computer science
    Psicología
    Psychology
    URI
    http://hdl.handle.net/10259/6154
    Versión del editor
    https://doi.org/10.1007/s12528-021-09289-9
    Aparece en las colecciones
    • Artículos BEST-AI
    • Artículos ADMIRABLE
    • Artículos DATAHES
    Atribución 4.0 Internacional
    Documento(s) sujeto(s) a una licencia Creative Commons Atribución 4.0 Internacional
    Ficheros en este ítem
    Nombre:
    Sáiz-jche_2021.pdf
    Tamaño:
    1.536Mb
    Formato:
    Adobe PDF
    Thumbnail
    Visualizar/Abrir

    Métricas

    Citas

    Academic Search
    Ver estadísticas de uso

    Exportar

    RISMendeleyRefworksZotero
    • edm
    • marc
    • xoai
    • qdc
    • ore
    • ese
    • dim
    • uketd_dc
    • oai_dc
    • etdms
    • rdf
    • mods
    • mets
    • didl
    • premis
    Mostrar el registro completo del ítem