Universidad de Burgos RIUBU Principal Default Universidad de Burgos RIUBU Principal Default
  • español
  • English
  • français
  • Deutsch
  • português (Brasil)
  • italiano
Universidad de Burgos RIUBU Principal Default
  • Ayuda
  • Contacto
  • Sugerencias
  • Acceso abierto
    • Archivar en RIUBU
    • Acuerdos editoriales para la publicación en acceso abierto
    • Controla tus derechos, facilita el acceso abierto
    • Sobre el acceso abierto y la UBU
    • español
    • English
    • français
    • Deutsch
    • português (Brasil)
    • italiano
    • español
    • English
    • français
    • Deutsch
    • português (Brasil)
    • italiano
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    Listar

    Todo RIUBUComunidadesFechaAutor / DirectorTítuloMateria / AsignaturaEsta colecciónFechaAutor / DirectorTítuloMateria / Asignatura

    Mi cuenta

    AccederRegistro

    Estadísticas

    Ver Estadísticas de uso

    Compartir

    Ver ítem 
    •   RIUBU Principal
    • E-Prints y Datos de investigación
    • Grupos de investigación
    • Data Analysis Techniques Applied in health environments sciences (DATAHES)
    • Artículos DATAHES
    • Ver ítem
    •   RIUBU Principal
    • E-Prints y Datos de investigación
    • Grupos de investigación
    • Data Analysis Techniques Applied in health environments sciences (DATAHES)
    • Artículos DATAHES
    • Ver ítem

    Por favor, use este identificador para citar o enlazar este ítem: http://hdl.handle.net/10259/6238

    Título
    Analysis of the Learning Process through Eye Tracking Technology and Feature Selection Techniques
    Autor
    Sáiz Manzanares, María ConsueloAutoridad UBU Orcid
    Ramos Pérez, IsmaelAutoridad UBU Orcid
    Arnaiz Rodríguez, Adrián
    Rodríguez Arribas, SandraAutoridad UBU Orcid
    Almeida, Leandro
    Martin, Caroline FrançoiseAutoridad UBU
    Publicado en
    Applied Sciences. 2021, V. 11, n. 13, 6157
    Editorial
    MDPI
    Fecha de publicación
    2021-07
    ISSN
    2076-3417
    DOI
    10.3390/app11136157
    Resumen
    In recent decades, the use of technological resources such as the eye tracking methodology is providing cognitive researchers with important tools to better understand the learning process. However, the interpretation of the metrics requires the use of supervised and unsupervised learning techniques. The main goal of this study was to analyse the results obtained with the eye tracking methodology by applying statistical tests and supervised and unsupervised machine learning techniques, and to contrast the effectiveness of each one. The parameters of fixations, saccades, blinks and scan path, and the results in a puzzle task were found. The statistical study concluded that no significant differences were found between participants in solving the crossword puzzle task; significant differences were only detected in the parameters saccade amplitude minimum and saccade velocity minimum. On the other hand, this study, with supervised machine learning techniques, provided possible features for analysis, some of them different from those used in the statistical study. Regarding the clustering techniques, a good fit was found between the algorithms used (k-means ++, fuzzy k-means and DBSCAN). These algorithms provided the learning profile of the participants in three types (students over 50 years old; and students and teachers under 50 years of age). Therefore, the use of both types of data analysis is considered complementary.
    Palabras clave
    Machine learning
    Cognition
    Eye tracking
    Instance selection
    Clustering
    Information processing
    Materia
    Enseñanza
    Teaching
    Psicología
    Psychology
    Tecnología
    Technology
    URI
    http://hdl.handle.net/10259/6238
    Versión del editor
    https://doi.org/10.3390/app11136157
    Aparece en las colecciones
    • Artículos DATAHES
    • Artículos Lenguajes y Sistemas Informáticos
    • Artículos Filología Inglesa
    Atribución 4.0 Internacional
    Documento(s) sujeto(s) a una licencia Creative Commons Atribución 4.0 Internacional
    Ficheros en este ítem
    Nombre:
    Saiz-as_2021.pdf
    Tamaño:
    3.809Mb
    Formato:
    Adobe PDF
    Thumbnail
    Visualizar/Abrir

    Métricas

    Citas

    Academic Search
    Ver estadísticas de uso

    Exportar

    RISMendeleyRefworksZotero
    • edm
    • marc
    • xoai
    • qdc
    • ore
    • ese
    • dim
    • uketd_dc
    • oai_dc
    • etdms
    • rdf
    • mods
    • mets
    • didl
    • premis
    Mostrar el registro completo del ítem