Universidad de Burgos RIUBU Principal Default Universidad de Burgos RIUBU Principal Default
  • español
  • English
  • français
  • Deutsch
  • português (Brasil)
  • italiano
Universidad de Burgos RIUBU Principal Default
  • Ayuda
  • Contacto
  • Sugerencias
  • Acceso abierto
    • Archivar en RIUBU
    • Acuerdos editoriales para la publicación en acceso abierto
    • Controla tus derechos, facilita el acceso abierto
    • Sobre el acceso abierto y la UBU
    • español
    • English
    • français
    • Deutsch
    • português (Brasil)
    • italiano
    • español
    • English
    • français
    • Deutsch
    • português (Brasil)
    • italiano
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    Listar

    Todo RIUBUComunidadesFechaAutor / DirectorTítuloMateria / AsignaturaEsta colecciónFechaAutor / DirectorTítuloMateria / Asignatura

    Mi cuenta

    AccederRegistro

    Estadísticas

    Ver Estadísticas de uso

    Compartir

    Ver ítem 
    •   RIUBU Principal
    • E-Prints y Datos de investigación
    • Grupos de investigación
    • Compostaje (UBUCOMP)
    • Artículos UBUCOMP
    • Ver ítem
    •   RIUBU Principal
    • E-Prints y Datos de investigación
    • Grupos de investigación
    • Compostaje (UBUCOMP)
    • Artículos UBUCOMP
    • Ver ítem

    Por favor, use este identificador para citar o enlazar este ítem: http://hdl.handle.net/10259/6388

    Título
    Humidity forecasting in a potato plantation using time-series neural models
    Autor
    Yartu González, Mercedes Esther de
    Cambra Baseca, CarlosAutoridad UBU Orcid
    Navarro González, MilagrosAutoridad UBU Orcid
    Rad Moradillo, Juan CarlosAutoridad UBU Orcid
    Arroyo Puente, ÁngelAutoridad UBU Orcid
    Herrero Cosío, ÁlvaroAutoridad UBU Orcid
    Publicado en
    Journal of Computational Science. 2022, V. 59, 101547
    Editorial
    Elsevier
    Fecha de publicación
    2022-03
    ISSN
    1877-7503
    DOI
    10.1016/j.jocs.2021.101547
    Resumen
    It is widely acknowledged that, under the frame of sustainable farming, using the minimum water resources is a relevant requirement. In order to do that, precision irrigation aims at identifying the irrigation needs of plantations and irrigate accordingly. Artificial intelligence is a promising solution in this field as intelligent models are able to learn the soil moisture dynamics in the soil-plant-atmosphere system and then generating appropriate irrigation scheduling. This is a complex task as the phenology of plants and its water demand vary with soil properties and weather conditions. The present research contributes to this challenging task by proposing the application of neural networks in order to learn the time-series evolution of irrigation needs associated to a potato plantation. Several of such models are thoroughly compared, together with different interpolation methods, in order to find the best combination for accurately forecasting water needs. In order to predict the soil water content in a potato field crop, in which soil humidity probes were installed at 15, 30, and 45 cm depth during the whole cycle of a potato crop. This innovative study and its promising results provide with significant contributions to address the problem of predicting and managing groundwater for agricultural use in a sustainable way.
    Palabras clave
    Precision irrigation
    Potato crop
    Time series forecast
    Supervised learning
    Neural networks
    Interpolation
    Materia
    Agricultura
    Agriculture
    Informática
    Computer science
    URI
    http://hdl.handle.net/10259/6388
    Versión del editor
    https://doi.org/10.1016/j.jocs.2021.101547
    Aparece en las colecciones
    • Artículos GICAP
    • Artículos UBUCOMP
    Attribution-NonCommercial-NoDerivatives 4.0 Internacional
    Documento(s) sujeto(s) a una licencia Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 Internacional
    Ficheros en este ítem
    Nombre:
    Yartu-jcs_2022.pdf
    Tamaño:
    2.161Mb
    Formato:
    Adobe PDF
    Thumbnail
    Visualizar/Abrir

    Métricas

    Citas

    Academic Search
    Ver estadísticas de uso

    Exportar

    RISMendeleyRefworksZotero
    • edm
    • marc
    • xoai
    • qdc
    • ore
    • ese
    • dim
    • uketd_dc
    • oai_dc
    • etdms
    • rdf
    • mods
    • mets
    • didl
    • premis
    Mostrar el registro completo del ítem