Universidad de Burgos RIUBU Principal Default Universidad de Burgos RIUBU Principal Default
  • español
  • English
  • français
  • Deutsch
  • português (Brasil)
  • italiano
Universidad de Burgos RIUBU Principal Default
  • Ayuda
  • Contacto
  • Sugerencias
  • Acceso abierto
    • Archivar en RIUBU
    • Acuerdos editoriales para la publicación en acceso abierto
    • Controla tus derechos, facilita el acceso abierto
    • Sobre el acceso abierto y la UBU
    • español
    • English
    • français
    • Deutsch
    • português (Brasil)
    • italiano
    • español
    • English
    • français
    • Deutsch
    • português (Brasil)
    • italiano
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    Listar

    Todo RIUBUComunidadesFechaAutor / DirectorTítuloMateria / AsignaturaEsta colecciónFechaAutor / DirectorTítuloMateria / Asignatura

    Mi cuenta

    AccederRegistro

    Estadísticas

    Ver Estadísticas de uso

    Compartir

    Ver ítem 
    •   RIUBU Principal
    • E-Prints y Datos de investigación
    • Grupos de investigación
    • Inteligencia Computacional Aplicada (GICAP)
    • Artículos GICAP
    • Ver ítem
    •   RIUBU Principal
    • E-Prints y Datos de investigación
    • Grupos de investigación
    • Inteligencia Computacional Aplicada (GICAP)
    • Artículos GICAP
    • Ver ítem

    Por favor, use este identificador para citar o enlazar este ítem: http://hdl.handle.net/10259/7113

    Título
    Centroid based person detection using pixelwise prediction of the position
    Autor
    Dolezel, Petr
    Skrabanek, Pavel
    Stursa, Dominik
    Baruque Zanón, BrunoAutoridad UBU Orcid
    Cogollos Adrián, HéctorAutoridad UBU Orcid
    Kryda, Pavel
    Publicado en
    Journal of Computational Science. 2022, V. 63, 101760
    Editorial
    Elsevier
    Fecha de publicación
    2022-09
    ISSN
    1877-7503
    DOI
    10.1016/j.jocs.2022.101760
    Resumen
    Implementations of person detection in tracking and counting systems tend towards processing of orthogonally captured images on edge computing devices. The ellipse-like shape of heads in orthogonally captured images inspired us to predict head centroids to determine positions of persons in images. We predict the centroids using a fully convolutional network (FCN). We combine the FCN with simple image processing operations to ensure fast inference of the detector. We experiment with the size of the FCN output to further decrease the inference time. We compare the proposed centroid-based detector with bounding box-based detectors on head detection task in terms of the inference time and the detection performance. We propose a performance measure which allows quantitative comparison of the two detection approaches. For the training and evaluation of the detectors, we form original datasets of 8000 annotated images, which are characterized by high variability in terms of lighting conditions, background, image quality, and elevation profile of scenes. We propose an approach which allows simultaneous annotation of the images for both bounding box-based and centroid-based detection. The centroid-based detector shows the best detection performance while keeping edge computing standards.
    Palabras clave
    Person detection
    Fully convolutional networks
    Performance measure
    Edge computing
    Computer vision
    Materia
    Informática
    Computer science
    Fotografía
    Photography
    URI
    http://hdl.handle.net/10259/7113
    Versión del editor
    https://doi.org/10.1016/j.jocs.2022.101760
    Aparece en las colecciones
    • Artículos GICAP
    Atribución 4.0 Internacional
    Documento(s) sujeto(s) a una licencia Creative Commons Atribución 4.0 Internacional
    Ficheros en este ítem
    Nombre:
    Dolezel-jcs_2022.pdf
    Tamaño:
    2.004Mb
    Formato:
    Adobe PDF
    Thumbnail
    Visualizar/Abrir

    Métricas

    Citas

    Academic Search
    Ver estadísticas de uso

    Exportar

    RISMendeleyRefworksZotero
    • edm
    • marc
    • xoai
    • qdc
    • ore
    • ese
    • dim
    • uketd_dc
    • oai_dc
    • etdms
    • rdf
    • mods
    • mets
    • didl
    • premis
    Mostrar el registro completo del ítem