Universidad de Burgos RIUBU Principal Default Universidad de Burgos RIUBU Principal Default
  • español
  • English
  • français
  • Deutsch
  • português (Brasil)
  • italiano
Universidad de Burgos RIUBU Principal Default
  • Ayuda
  • Contacto
  • Sugerencias
  • Acceso abierto
    • Archivar en RIUBU
    • Acuerdos editoriales para la publicación en acceso abierto
    • Controla tus derechos, facilita el acceso abierto
    • Sobre el acceso abierto y la UBU
    • español
    • English
    • français
    • Deutsch
    • português (Brasil)
    • italiano
    • español
    • English
    • français
    • Deutsch
    • português (Brasil)
    • italiano
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    Listar

    Todo RIUBUComunidadesFechaAutor / DirectorTítuloMateria / AsignaturaEsta colecciónFechaAutor / DirectorTítuloMateria / Asignatura

    Mi cuenta

    AccederRegistro

    Estadísticas

    Ver Estadísticas de uso

    Compartir

    Ver ítem 
    •   RIUBU Principal
    • E-Prints y Datos de investigación
    • Grupos de investigación
    • Inteligencia Computacional Aplicada (GICAP)
    • Artículos GICAP
    • Ver ítem
    •   RIUBU Principal
    • E-Prints y Datos de investigación
    • Grupos de investigación
    • Inteligencia Computacional Aplicada (GICAP)
    • Artículos GICAP
    • Ver ítem

    Por favor, use este identificador para citar o enlazar este ítem: http://hdl.handle.net/10259/7245

    Título
    Deep Reinforcement Learning for the Management of Software-Defined Networks and Network Function Virtualization in an Edge-IoT Architecture
    Autor
    Alonso Rincón, Ricardo S.
    Sittón-Candanedo, Inés
    Casado Vara, Roberto CarlosAutoridad UBU Orcid
    Prieto, Javier
    Corchado, Juan M.
    Publicado en
    Sustaunability. 2020, V. 12, n. 14, e5706
    Editorial
    MDPI
    Fecha de publicación
    2020-07
    DOI
    10.3390/su12145706
    Resumen
    The Internet of Things (IoT) paradigm allows the interconnection of millions of sensor devices gathering information and forwarding to the Cloud, where data is stored and processed to infer knowledge and perform analysis and predictions. Cloud service providers charge users based on the computing and storage resources used in the Cloud. In this regard, Edge Computing can be used to reduce these costs. In Edge Computing scenarios, data is pre-processed and filtered in network edge before being sent to the Cloud, resulting in shorter response times and providing a certain service level even if the link between IoT devices and Cloud is interrupted. Moreover, there is a growing trend to share physical network resources and costs through Network Function Virtualization (NFV) architectures. In this sense, and related to NFV, Software-Defined Networks (SDNs) are used to reconfigure the network dynamically according to the necessities during time. For this purpose, Machine Learning mechanisms, such as Deep Reinforcement Learning techniques, can be employed to manage virtual data flows in networks. In this work, we propose the evolution of an existing Edge-IoT architecture to a new improved version in which SDN/NFV are used over the Edge-IoT capabilities. The proposed new architecture contemplates the use of Deep Reinforcement Learning techniques for the implementation of the SDN controller.
    Palabras clave
    Industrial internet of things
    Edge computing
    Software defined networks
    Network function virtualization
    Deep reinforcement learning
    Materia
    Informática
    Computer science
    URI
    http://hdl.handle.net/10259/7245
    Versión del editor
    https://doi.org/10.3390/su12145706
    Aparece en las colecciones
    • Artículos GICAP
    Atribución 4.0 Internacional
    Documento(s) sujeto(s) a una licencia Creative Commons Atribución 4.0 Internacional
    Ficheros en este ítem
    Nombre:
    Casado-sustainability_2020.pdf
    Tamaño:
    5.502Mb
    Formato:
    Adobe PDF
    Thumbnail
    Visualizar/Abrir

    Métricas

    Citas

    Academic Search
    Ver estadísticas de uso

    Exportar

    RISMendeleyRefworksZotero
    • edm
    • marc
    • xoai
    • qdc
    • ore
    • ese
    • dim
    • uketd_dc
    • oai_dc
    • etdms
    • rdf
    • mods
    • mets
    • didl
    • premis
    Mostrar el registro completo del ítem