Universidad de Burgos RIUBU Principal Default Universidad de Burgos RIUBU Principal Default
  • español
  • English
  • français
  • Deutsch
  • português (Brasil)
  • italiano
Universidad de Burgos RIUBU Principal Default
  • Ayuda
  • Contacto
  • Sugerencias
  • Acceso abierto
    • Archivar en RIUBU
    • Acuerdos editoriales para la publicación en acceso abierto
    • Controla tus derechos, facilita el acceso abierto
    • Sobre el acceso abierto y la UBU
    • español
    • English
    • français
    • Deutsch
    • português (Brasil)
    • italiano
    • español
    • English
    • français
    • Deutsch
    • português (Brasil)
    • italiano
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    Listar

    Todo RIUBUComunidadesFechaAutor / DirectorTítuloMateria / AsignaturaEsta colecciónFechaAutor / DirectorTítuloMateria / Asignatura

    Mi cuenta

    AccederRegistro

    Estadísticas

    Ver Estadísticas de uso

    Compartir

    Ver ítem 
    •   RIUBU Principal
    • E-Prints y Datos de investigación
    • Grupos de investigación
    • Inteligencia Computacional Aplicada (GICAP)
    • Artículos GICAP
    • Ver ítem
    •   RIUBU Principal
    • E-Prints y Datos de investigación
    • Grupos de investigación
    • Inteligencia Computacional Aplicada (GICAP)
    • Artículos GICAP
    • Ver ítem

    Por favor, use este identificador para citar o enlazar este ítem: http://hdl.handle.net/10259/7255

    Título
    Self-Organizing Maps to Validate Anti-Pollution Policies
    Autor
    Arroyo Puente, ÁngelAutoridad UBU Orcid
    Cambra Baseca, CarlosAutoridad UBU Orcid
    Herrero Cosío, ÁlvaroAutoridad UBU Orcid
    Tricio Gómez, VerónicaAutoridad UBU
    Corchado, EmilioAutoridad UBU Orcid
    Publicado en
    Logic Journal of the IGPL. 2019, V. 28, n. 4, p. 596-614
    Editorial
    Oxford University Press
    Fecha de publicación
    2019-08
    ISSN
    1367-0751
    DOI
    10.1093/jigpal/jzz049
    Resumen
    This study presents the application of self-organizing maps to air-quality data in order to analyze episodes of high pollution in Madrid (Spain’s capital city). The goal of this work is to explore the dataset and then compare several scenarios with similar atmospheric conditions (periods of high Nitrogen dioxide concentration): some of them when no actions were taken and some when traffic restrictions were imposed. The levels of main pollutants, recorded at these stations for eleven days at four different times from 2015 to 2018, are analyzed in order to determine the effectiveness of the anti-pollution measures. The visualization of trajectories on the self-organizing map let us clearly see the evolution of pollution levels and consequently evaluate the effectiveness of the taken measures, after and during the protocol activation time.
    Palabras clave
    Air quality
    Time evolution
    Self-organizing maps
    Trajectories
    Data visualization
    Materia
    Informática
    Computer science
    URI
    http://hdl.handle.net/10259/7255
    Versión del editor
    https://doi.org/10.1093/jigpal/jzz049
    Aparece en las colecciones
    • Artículos Física Aplicada
    • Artículos GICAP
    Ficheros en este ítem
    Nombre:
    Arroyo-igpl_2019.pdf
    Tamaño:
    2.836Mb
    Formato:
    Adobe PDF
    Thumbnail
    Visualizar/Abrir

    Métricas

    Citas

    Academic Search
    Ver estadísticas de uso

    Exportar

    RISMendeleyRefworksZotero
    • edm
    • marc
    • xoai
    • qdc
    • ore
    • ese
    • dim
    • uketd_dc
    • oai_dc
    • etdms
    • rdf
    • mods
    • mets
    • didl
    • premis
    Mostrar el registro completo del ítem