Universidad de Burgos RIUBU Principal Default Universidad de Burgos RIUBU Principal Default
  • español
  • English
  • français
  • Deutsch
  • português (Brasil)
  • italiano
Universidad de Burgos RIUBU Principal Default
  • Ayuda
  • Contacto
  • Sugerencias
  • Acceso abierto
    • Archivar en RIUBU
    • Acuerdos editoriales para la publicación en acceso abierto
    • Controla tus derechos, facilita el acceso abierto
    • Sobre el acceso abierto y la UBU
    • español
    • English
    • français
    • Deutsch
    • português (Brasil)
    • italiano
    • español
    • English
    • français
    • Deutsch
    • português (Brasil)
    • italiano
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    Listar

    Todo RIUBUComunidadesFechaAutor / DirectorTítuloMateria / AsignaturaEsta colecciónFechaAutor / DirectorTítuloMateria / Asignatura

    Mi cuenta

    AccederRegistro

    Estadísticas

    Ver Estadísticas de uso

    Compartir

    Ver ítem 
    •   RIUBU Principal
    • E-Prints y Datos de investigación
    • Grupos de investigación
    • Inteligencia Computacional Aplicada (GICAP)
    • Artículos GICAP
    • Ver ítem
    •   RIUBU Principal
    • E-Prints y Datos de investigación
    • Grupos de investigación
    • Inteligencia Computacional Aplicada (GICAP)
    • Artículos GICAP
    • Ver ítem

    Por favor, use este identificador para citar o enlazar este ítem: http://hdl.handle.net/10259/7266

    Título
    Clustering extension of MOVICAB-IDS to distinguish intrusions in flow-based data
    Autor
    Sánchez, RaúlAutoridad UBU
    Herrero Cosío, ÁlvaroAutoridad UBU Orcid
    Corchado, EmilioAutoridad UBU Orcid
    Publicado en
    Logic Journal of the IGPL. 2017, V. 25, n. 1, p. 83-102
    Editorial
    Oxford University Press
    Fecha de publicación
    2017-02
    ISSN
    1367-0751
    DOI
    10.1093/jigpal/jzw047
    Resumen
    Much effort has been devoted to research on intrusion detection (ID) in recent years because intrusion strategies and technologies are constantly and quickly evolving. As an innovative solution based on visualization, MObile VIsualisation Connectionist Agent-Based IDS was previously proposed, conceived as a hybrid-intelligent ID System. It was designed to analyse continuous network data at a packet level and is extended in present paper for the analysis of flow-based traffic data. By incorporating clustering techniques to the original proposal, network flows are investigated trying to identify different types of attacks. The analysed real-life data (the well-known dataset from the University of Twente) come from a honeypot directly connected to the Internet (thus ensuring attack-exposure) and is analysed by means of clustering and neural techniques, individually and in conjunction. Promising results are obtained, proving the validity of the proposed extension for the analysis of network flow data
    Palabras clave
    Network intrusion detection
    Network flow
    Neural projection
    Clustering
    MOVICAB-IDS
    Materia
    Informática
    Computer science
    URI
    http://hdl.handle.net/10259/7266
    Versión del editor
    https://doi.org/10.1093/jigpal/jzw047
    Aparece en las colecciones
    • Artículos GICAP
    Ficheros en este ítem
    Nombre:
    Sánchez-igpl_2017.pdf
    Tamaño:
    851.8Kb
    Formato:
    Adobe PDF
    Thumbnail
    Visualizar/Abrir

    Métricas

    Citas

    Academic Search
    Ver estadísticas de uso

    Exportar

    RISMendeleyRefworksZotero
    • edm
    • marc
    • xoai
    • qdc
    • ore
    • ese
    • dim
    • uketd_dc
    • oai_dc
    • etdms
    • rdf
    • mods
    • mets
    • didl
    • premis
    Mostrar el registro completo del ítem