Universidad de Burgos RIUBU Principal Default Universidad de Burgos RIUBU Principal Default
  • español
  • English
  • français
  • Deutsch
  • português (Brasil)
  • italiano
Universidad de Burgos RIUBU Principal Default
  • Ayuda
  • Contacto
  • Sugerencias
  • Acceso abierto
    • Archivar en RIUBU
    • Acuerdos editoriales para la publicación en acceso abierto
    • Controla tus derechos, facilita el acceso abierto
    • Sobre el acceso abierto y la UBU
    • español
    • English
    • français
    • Deutsch
    • português (Brasil)
    • italiano
    • español
    • English
    • français
    • Deutsch
    • português (Brasil)
    • italiano
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    Listar

    Todo RIUBUComunidadesFechaAutor / DirectorTítuloMateria / AsignaturaEsta colecciónFechaAutor / DirectorTítuloMateria / Asignatura

    Mi cuenta

    AccederRegistro

    Estadísticas

    Ver Estadísticas de uso

    Compartir

    Ver ítem 
    •   RIUBU Principal
    • E-Prints y Datos de investigación
    • Grupos de investigación
    • Inteligencia Computacional Aplicada (GICAP)
    • Artículos GICAP
    • Ver ítem
    •   RIUBU Principal
    • E-Prints y Datos de investigación
    • Grupos de investigación
    • Inteligencia Computacional Aplicada (GICAP)
    • Artículos GICAP
    • Ver ítem

    Por favor, use este identificador para citar o enlazar este ítem: http://hdl.handle.net/10259/7414

    Título
    Detection of heat flux failures in building using a soft computing diagnostic system
    Autor
    Sedano, Javier
    Corchado, EmilioAutoridad UBU Orcid
    Curiel Herrera, Leticia ElenaAutoridad UBU
    Villar, José Ramón
    Cal, Enrique de la
    Publicado en
    Neural Network World. 2010, V. 20, n. 7, p. 883 - 898
    Editorial
    Academy of Sciences of the Czech Republic. Institute of Computer Science
    Fecha de publicación
    2010
    ISSN
    1210-0552
    Descripción
    Trabajo publicado en: Special Issue on 5th International Conference on Hybrid Artificial Intelligence Systems
    Resumen
    The detection of insulation failures in buildings could potentially conserve energy supplies and improve future designs. Improvements to thermal insulation in buildings include the development of models to assess fabric gain - heat flux through exterior walls in the building- and heating processes. Thermal insulation standards are now contractual obligations in new buildings, and the energy efficiency of buildings constructed prior to these regulations has yet to be determined. The main assumption is that it will be based on heat flux and conductivity measurement. Diagnostic systems to detect thermal insulation failures should recognize anomalous situations in a building that relate to insulation, heating and ventilation. This highly relevant issue in the construction sector today is approached through a novel intelligent procedure that can be programmed according to local building and heating system regulations and the specific features of a given climate zone. It is based on the following phases. Firstly, the dynamic thermal performance of different variables is specifically modeled. Secondly, an exploratory projection pursuit method called Cooperative Maximum-Likelihood Hebbian Learning extracts the relevant features. Finally, a supervised neural model and identification techniques constitute the model for the diagnosis of thermal insulation failures in building due to the heat flux through exterior walls, using relevant features of the data set. The reliability of the proposed method is validated with real data sets from several Spanish cities in winter time.
    Palabras clave
    Computational intelligence
    Soft computing
    Identification Systems
    Artificial Neural Networks
    Non-linear Systems
    Energetic Efficiency
    Materia
    Informática
    Computer science
    URI
    http://hdl.handle.net/10259/7414
    Versión del editor
    http://www.nnw.cz/obsahy10.html
    Aparece en las colecciones
    • Artículos GICAP
    Ficheros en este ítem
    Nombre:
    Sedano-nnw_2010.pdf
    Tamaño:
    1.322Mb
    Formato:
    Adobe PDF
    Thumbnail
    Visualizar/Abrir

    Métricas

    Citas

    Academic Search
    Ver estadísticas de uso

    Exportar

    RISMendeleyRefworksZotero
    • edm
    • marc
    • xoai
    • qdc
    • ore
    • ese
    • dim
    • uketd_dc
    • oai_dc
    • etdms
    • rdf
    • mods
    • mets
    • didl
    • premis
    Mostrar el registro completo del ítem