Universidad de Burgos RIUBU Principal Default Universidad de Burgos RIUBU Principal Default
  • español
  • English
  • français
  • Deutsch
  • português (Brasil)
  • italiano
Universidad de Burgos RIUBU Principal Default
  • Ayuda
  • Contacto
  • Sugerencias
  • Acceso abierto
    • Archivar en RIUBU
    • Acuerdos editoriales para la publicación en acceso abierto
    • Controla tus derechos, facilita el acceso abierto
    • Sobre el acceso abierto y la UBU
    • español
    • English
    • français
    • Deutsch
    • português (Brasil)
    • italiano
    • español
    • English
    • français
    • Deutsch
    • português (Brasil)
    • italiano
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    Listar

    Todo RIUBUComunidadesFechaAutor / DirectorTítuloMateria / AsignaturaEsta colecciónFechaAutor / DirectorTítuloMateria / Asignatura

    Mi cuenta

    AccederRegistro

    Estadísticas

    Ver Estadísticas de uso

    Compartir

    Ver ítem 
    •   RIUBU Principal
    • E-Prints y Datos de investigación
    • Grupos de investigación
    • Metaheurísticos (GRINUBUMET)
    • Artículos GRINUBUMET
    • Ver ítem
    •   RIUBU Principal
    • E-Prints y Datos de investigación
    • Grupos de investigación
    • Metaheurísticos (GRINUBUMET)
    • Artículos GRINUBUMET
    • Ver ítem

    Por favor, use este identificador para citar o enlazar este ítem: http://hdl.handle.net/10259/7441

    Título
    An agent-based simulator for quantifying the cost of uncertainty in production systems
    Autor
    Costas-Gual, José
    Puche Regaliza, Julio CésarAutoridad UBU Orcid
    Ponte, Borja
    Gupta, Mahesh C.
    Publicado en
    Simulation Modelling Practice and Theory. 2023, V. 123, 102660
    Editorial
    Elsevier
    Fecha de publicación
    2023-02
    ISSN
    1569-190X
    DOI
    10.1016/j.simpat.2022.102660
    Resumen
    Product-mix problems, where a range of products that generate different incomes compete for a limited set of production resources, are key to the success of many organisations. In their deterministic forms, these are simple optimisation problems; however, the consideration of stochasticity may turn them into analytically and/or computationally intractable problems. Thus, simulation becomes a powerful approach for providing efficient solutions to real-world productmix problems. In this paper, we develop a simulator for exploring the cost of uncertainty in these production systems using Petri nets and agent-based techniques. Specifically, we implement a stochastic version of Goldratt’s PQ problem that incorporates uncertainty in the volume and mix of customer demand. Through statistics, we derive regression models that link the net profit to the level of variability in the volume and mix. While the net profit decreases as uncertainty grows, we find that the system is able to effectively accommodate a certain level of variability when using a Drum-Buffer-Rope mechanism. In this regard, we reveal that the system is more robust to mix than to volume uncertainty. Later, we analyse the cost-benefit trade-off of uncertainty reduction, which has important implications for professionals. This analysis may help them optimise the profitability of investments. In this regard, we observe that mitigating volume uncertainty should be given higher consideration when the costs of reducing variability are low, while the efforts are best concentrated on alleviating mix uncertainty under high costs.
    Palabras clave
    Agent-based modelling
    Model-driven decision support system
    Petri nets
    Product-mix problem
    Simulation
    Theory of constraints
    Materia
    Economía
    Economics
    Informática
    Computer science
    URI
    http://hdl.handle.net/10259/7441
    Versión del editor
    https://doi.org/10.1016/j.simpat.2022.102660
    Aparece en las colecciones
    • Artículos GRINUBUMET
    Attribution-NonCommercial-NoDerivatives 4.0 Internacional
    Documento(s) sujeto(s) a una licencia Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 Internacional
    Ficheros en este ítem
    Nombre:
    Costas-smpt_2023.pdf
    Tamaño:
    6.896Mb
    Formato:
    Adobe PDF
    Thumbnail
    Visualizar/Abrir

    Métricas

    Citas

    Academic Search
    Ver estadísticas de uso

    Exportar

    RISMendeleyRefworksZotero
    • edm
    • marc
    • xoai
    • qdc
    • ore
    • ese
    • dim
    • uketd_dc
    • oai_dc
    • etdms
    • rdf
    • mods
    • mets
    • didl
    • premis
    Mostrar el registro completo del ítem