Universidad de Burgos RIUBU Principal Default Universidad de Burgos RIUBU Principal Default
  • español
  • English
  • français
  • Deutsch
  • português (Brasil)
  • italiano
Universidad de Burgos RIUBU Principal Default
  • Ayuda
  • Contacto
  • Sugerencias
  • Acceso abierto
    • Archivar en RIUBU
    • Acuerdos editoriales para la publicación en acceso abierto
    • Controla tus derechos, facilita el acceso abierto
    • Sobre el acceso abierto y la UBU
    • español
    • English
    • français
    • Deutsch
    • português (Brasil)
    • italiano
    • español
    • English
    • français
    • Deutsch
    • português (Brasil)
    • italiano
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    Listar

    Todo RIUBUComunidadesFechaAutor / DirectorTítuloMateria / AsignaturaEsta colecciónFechaAutor / DirectorTítuloMateria / Asignatura

    Mi cuenta

    AccederRegistro

    Estadísticas

    Ver Estadísticas de uso

    Compartir

    Ver ítem 
    •   RIUBU Principal
    • E-Prints y Datos de investigación
    • Departamentos y Centros
    • Departamento de Ingeniería Electromecánica
    • Área de Ingeniería de Sistemas y Automática
    • Artículos Ingeniería de Sistemas y Automática
    • Ver ítem
    •   RIUBU Principal
    • E-Prints y Datos de investigación
    • Departamentos y Centros
    • Departamento de Ingeniería Electromecánica
    • Área de Ingeniería de Sistemas y Automática
    • Artículos Ingeniería de Sistemas y Automática
    • Ver ítem

    Por favor, use este identificador para citar o enlazar este ítem: http://hdl.handle.net/10259/7483

    Título
    Glasius bio-inspired neural networks based UV-C disinfection path planning improved by preventive deadlock processing algorithm
    Autor
    Rodrigo, Daniel Vicente
    Sierra Garcia, Jesús EnriqueAutoridad UBU Orcid
    Santos, Matilde
    Publicado en
    Advances in Engineering Software. 2023, V. 17, 103330
    Editorial
    Elsevier
    Fecha de publicación
    2023-01
    ISSN
    0965-9978
    DOI
    10.1016/j.advengsoft.2022.103330
    Resumen
    The COVID-19 pandemic made robot manufacturers explore the idea of combining mobile robotics with UV-C light to automate the disinfection processes. But performing this process in an optimum way introduces some challenges: on the one hand, it is necessary to guarantee that all surfaces receive the radiation level to ensure the disinfection; at the same time, it is necessary to minimize the radiation dose to avoid the damage of the environment. In this work, both challenges are addressed with the design of a complete coverage path planning (CCPP) algorithm. To do it, a novel architecture that combines the glasius bio-inspired neural network (GBNN), a motion strategy, an UV-C estimator, a speed controller, and a pure pursuit controller have been designed. One of the main issues in CCPP is the deadlocks. In this application they may cause a loss of the operation, lack of regularity and high peaks in the radiation dose map, and in the worst case, they can make the robot to get stuck and not complete the disinfection process. To tackle this problem, in this work we propose a preventive deadlock processing algorithm (PDPA) and an escape route generator algorithm (ERGA). Simulation results show how the application of PDPA and the ERGA allow to complete complex maps in an efficient way where the application of GBNN is not enough. Indeed, a 58% more of covered surface is observed. Furthermore, two different motion strategies have been compared: boustrophedon and spiral motion, to check its influence on the performance of the robot navigation.
    Palabras clave
    Complete coverage path planning
    Mobile robot
    UV-C
    Deadlocks
    Escape routes
    Materia
    Electrotecnia
    Electrical engineering
    Ingeniería mecánica
    Mechanical engineering
    URI
    http://hdl.handle.net/10259/7483
    Versión del editor
    https://doi.org/10.1016/j.advengsoft.2022.103330
    Aparece en las colecciones
    • Artículos Ingeniería de Sistemas y Automática
    Attribution-NonCommercial-NoDerivatives 4.0 Internacional
    Documento(s) sujeto(s) a una licencia Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 Internacional
    Ficheros en este ítem
    Nombre:
    Rodrigo-aes_2023.pdf
    Tamaño:
    6.234Mb
    Formato:
    Adobe PDF
    Thumbnail
    Visualizar/Abrir

    Métricas

    Citas

    Academic Search
    Ver estadísticas de uso

    Exportar

    RISMendeleyRefworksZotero
    • edm
    • marc
    • xoai
    • qdc
    • ore
    • ese
    • dim
    • uketd_dc
    • oai_dc
    • etdms
    • rdf
    • mods
    • mets
    • didl
    • premis
    Mostrar el registro completo del ítem