Universidad de Burgos RIUBU Principal Default Universidad de Burgos RIUBU Principal Default
  • español
  • English
  • français
  • Deutsch
  • português (Brasil)
  • italiano
Universidad de Burgos RIUBU Principal Default
  • Ayuda
  • Contacto
  • Sugerencias
  • Acceso abierto
    • Archivar en RIUBU
    • Acuerdos editoriales para la publicación en acceso abierto
    • Controla tus derechos, facilita el acceso abierto
    • Sobre el acceso abierto y la UBU
    • español
    • English
    • français
    • Deutsch
    • português (Brasil)
    • italiano
    • español
    • English
    • français
    • Deutsch
    • português (Brasil)
    • italiano
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    Listar

    Todo RIUBUComunidadesFechaAutor / DirectorTítuloMateria / AsignaturaEsta colecciónFechaAutor / DirectorTítuloMateria / Asignatura

    Mi cuenta

    AccederRegistro

    Estadísticas

    Ver Estadísticas de uso

    Compartir

    Ver ítem 
    •   RIUBU Principal
    • E-Prints y Datos de investigación
    • Grupos de investigación
    • Data Analysis Techniques Applied in health environments sciences (DATAHES)
    • Artículos DATAHES
    • Ver ítem
    •   RIUBU Principal
    • E-Prints y Datos de investigación
    • Grupos de investigación
    • Data Analysis Techniques Applied in health environments sciences (DATAHES)
    • Artículos DATAHES
    • Ver ítem

    Por favor, use este identificador para citar o enlazar este ítem: http://hdl.handle.net/10259/7753

    Título
    Perceived satisfaction of university students with the use of chatbots as a tool for self-regulated learning
    Autor
    Sáiz Manzanares, María ConsueloAutoridad UBU Orcid
    Marticorena Sánchez, RaúlAutoridad UBU Orcid
    Martín Antón, Luis Jorge
    González Díez, IreneAutoridad UBU Orcid
    Almeida, Leandro
    Publicado en
    Heliyon. 2023, V. 9, n. 1, e12843
    Editorial
    Cell Press
    Fecha de publicación
    2023-01
    ISSN
    2405-8440
    DOI
    10.1016/j.heliyon.2023.e12843
    Resumen
    Chatbots are a promising resource for giving students feedback and helping them deploy metacognitive strategies in their learning processes. In this study we worked with a sample of 57 university students, 42 undergraduate and 15 Master's degree students in Health Sciences. A mixed research methodology was applied. The quantitative study analysed the influence of the variables educational level (undergraduate vs. master's degree) and level of prior knowledge on the frequency of chatbot use (low vs. average), learning outcomes, and satisfaction with the chatbot's usefulness. In addition, we examined whether the frequency of chatbot use depended on students' metacognitive strategies. The qualitative study analysed the students' suggestions for improvement to the chatbot and the type of questions it used. The results indicated that the level of degree being studied influenced the frequency of chatbot use and learning outcomes, with Master's students exhibiting higher levels of both, but levels of prior knowledge only influenced learning outcomes. Significant differences were also found in students' perceived satisfaction with the use of the chatbot, with Master's students scoring higher, but not with respect to the level of prior knowledge. No conclusive results were found regarding frequency of chatbot use and the levels of students' metacognitive strategies. Further studies are needed to guide this research based on the students' suggestions for improvement.
    Palabras clave
    Chatbot
    Prior knowledge
    Metacognitive strategies
    Higher education
    Effective learning
    Materia
    Enseñanza superior
    Education, Higher
    Psicología
    Psychology
    Tecnología
    Technology
    URI
    http://hdl.handle.net/10259/7753
    Versión del editor
    https://doi.org/10.1016/j.heliyon.2023.e12843
    Aparece en las colecciones
    • Artículos ADMIRABLE
    • Artículos DATAHES
    Attribution-NonCommercial-NoDerivatives 4.0 Internacional
    Documento(s) sujeto(s) a una licencia Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 Internacional
    Ficheros en este ítem
    Nombre:
    Saiz-heliyon_2023.pdf
    Tamaño:
    3.317Mb
    Formato:
    Adobe PDF
    Thumbnail
    Visualizar/Abrir
    Nombre:
    Saiz-heliyon_2023-Supplementary_data.zip
    Tamaño:
    1.545Mb
    Formato:
    zip
    Descripción:
    Material suplementario
    Thumbnail
    Visualizar/Abrir

    Métricas

    Citas

    Academic Search
    Ver estadísticas de uso

    Exportar

    RISMendeleyRefworksZotero
    • edm
    • marc
    • xoai
    • qdc
    • ore
    • ese
    • dim
    • uketd_dc
    • oai_dc
    • etdms
    • rdf
    • mods
    • mets
    • didl
    • premis
    Mostrar el registro completo del ítem