Universidad de Burgos RIUBU Principal Default Universidad de Burgos RIUBU Principal Default
  • español
  • English
  • français
  • Deutsch
  • português (Brasil)
  • italiano
Universidad de Burgos RIUBU Principal Default
  • Ayuda
  • Contacto
  • Sugerencias
  • Acceso abierto
    • Archivar en RIUBU
    • Acuerdos editoriales para la publicación en acceso abierto
    • Controla tus derechos, facilita el acceso abierto
    • Sobre el acceso abierto y la UBU
    • español
    • English
    • français
    • Deutsch
    • português (Brasil)
    • italiano
    • español
    • English
    • français
    • Deutsch
    • português (Brasil)
    • italiano
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    Listar

    Todo RIUBUComunidadesFechaAutor / DirectorTítuloMateria / AsignaturaEsta colecciónFechaAutor / DirectorTítuloMateria / Asignatura

    Mi cuenta

    AccederRegistro

    Estadísticas

    Ver Estadísticas de uso

    Compartir

    Ver ítem 
    •   RIUBU Principal
    • E-Prints y Datos de investigación
    • Grupos de investigación
    • Inteligencia Computacional Aplicada (GICAP)
    • Artículos GICAP
    • Ver ítem
    •   RIUBU Principal
    • E-Prints y Datos de investigación
    • Grupos de investigación
    • Inteligencia Computacional Aplicada (GICAP)
    • Artículos GICAP
    • Ver ítem

    Por favor, use este identificador para citar o enlazar este ítem: http://hdl.handle.net/10259/8246

    Título
    A Hybrid Intelligent System to forecast solar energy production
    Autor
    Basurto Hornillos, NuñoAutoridad UBU Orcid
    Arroyo Puente, ÁngelAutoridad UBU Orcid
    Vega, Rafael
    Quintián, Héctor
    Calvo-Rolle, José Luis
    Herrero Cosío, ÁlvaroAutoridad UBU Orcid
    Publicado en
    Computers & Electrical Engineering. 2019, V. 78, p. 373-387
    Editorial
    Elsevier
    Fecha de publicación
    2019-09
    ISSN
    0045-7906
    DOI
    10.1016/j.compeleceng.2019.07.023
    Resumen
    There is wide acknowledgement that solar energy is a promising and renewable source of electricity. However, complementary sources are sometimes required, due to its limited capacity, in order to satisfy user demand. A Hybrid Intelligent System (HIS) is proposed in this paper to optimize the range of possible solar energy and power grid combinations. It is designed to predict the energy generated by any given solar thermal system. To do so, the novel HIS is based on local models that implement both supervised learning (artificial neural networks) and unsupervised learning (clustering). These techniques are combined and applied to a realworld installation located in Spain. Alternative models are compared and validated in this case study with data from a whole year. With an optimum parameter fit, the proposed system managed to calculate the solar energyproduced by the panel with an error that was lower than 10-4 in 86% of cases.
    Palabras clave
    Hybrid Intelligent System
    Clustering
    Regression
    Neural networks
    Solar Energy
    Renewable energies
    Materia
    Informática
    Computer science
    URI
    http://hdl.handle.net/10259/8246
    Versión del editor
    https://doi.org/10.1016/j.compeleceng.2019.07.023
    Aparece en las colecciones
    • Artículos GICAP
    Attribution-NonCommercial-NoDerivatives 4.0 Internacional
    Documento(s) sujeto(s) a una licencia Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 Internacional
    Ficheros en este ítem
    Nombre:
    Basurto-cee_2019.pdf
    Tamaño:
    574.4Kb
    Formato:
    Adobe PDF
    Thumbnail
    Visualizar/Abrir

    Métricas

    Citas

    Academic Search
    Ver estadísticas de uso

    Exportar

    RISMendeleyRefworksZotero
    • edm
    • marc
    • xoai
    • qdc
    • ore
    • ese
    • dim
    • uketd_dc
    • oai_dc
    • etdms
    • rdf
    • mods
    • mets
    • didl
    • premis
    Mostrar el registro completo del ítem