Universidad de Burgos RIUBU Principal Default Universidad de Burgos RIUBU Principal Default
  • español
  • English
  • français
  • Deutsch
  • português (Brasil)
  • italiano
Universidad de Burgos RIUBU Principal Default
  • Ayuda
  • Contacto
  • Sugerencias
  • Acceso abierto
    • Archivar en RIUBU
    • Acuerdos editoriales para la publicación en acceso abierto
    • Controla tus derechos, facilita el acceso abierto
    • Sobre el acceso abierto y la UBU
    • español
    • English
    • français
    • Deutsch
    • português (Brasil)
    • italiano
    • español
    • English
    • français
    • Deutsch
    • português (Brasil)
    • italiano
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    Listar

    Todo RIUBUComunidadesFechaAutor / DirectorTítuloMateria / AsignaturaEsta colecciónFechaAutor / DirectorTítuloMateria / Asignatura

    Mi cuenta

    AccederRegistro

    Estadísticas

    Ver Estadísticas de uso

    Compartir

    Ver ítem 
    •   RIUBU Principal
    • E-Prints y Datos de investigación
    • Grupos de investigación
    • Metaheurísticos (GRINUBUMET)
    • Artículos GRINUBUMET
    • Ver ítem
    •   RIUBU Principal
    • E-Prints y Datos de investigación
    • Grupos de investigación
    • Metaheurísticos (GRINUBUMET)
    • Artículos GRINUBUMET
    • Ver ítem

    Por favor, use este identificador para citar o enlazar este ítem: http://hdl.handle.net/10259/8408

    Título
    Variable neighborhood search approach to face‐shield delivery during pandemic periods
    Autor
    Pacheco Bonrostro, JoaquínAutoridad UBU Orcid
    Casado Yusta, SilviaAutoridad UBU Orcid
    Publicado en
    International Transactions in Operational Research. 2023, p. 1-26
    Editorial
    Wiley
    Fecha de publicación
    2023-11
    ISSN
    0969-6016
    DOI
    10.1111/itor.13410
    Resumen
    In 2020, the COVID-19 pandemic and its rapid spread shook health authorities worldwide at the regional and national levels. Healthcare systems had difficulty acquiring important supplies, such as face shields, which at that time were essential for healthcare staff. The need for this material increased with the spread of the pandemic. In most areas, warehouses did not have a sufficient stock of this product. This situation has occurred in the cities and provinces of Burgos (Spain). Volunteers (citizens and small companies) owning three-dimensional printers offered themselves to manufacture face shields. These volunteers are called “makers.” Similarly, different organizations (mainly Civil Protection) took charge of transport activities (delivery of material to the makers, collection of face shields, and delivery of the latter to hospitals and other entities). In this study, we were tasked with developing a system for planning and rationalizing these activities. The problems that were solved included a vehicle routing problem with different characteristics compared with other models in the literature. A previuous work described this problem, and the heuristic method used for the planning. However, it is necessary to develop tools that are as efficient as possible for similar situations. In this study, we propose a mathematical formulation of the problem and a method based on the metaheuristic strategies variable neighborhood search and greedy randomize adaptative search procedure on a multistart framework. Different tests with real instances used during the period in which these activities were conducted show that the new method improves the results obtained by the previous method as well as the commercial software.
    Palabras clave
    Coronavirus
    Sanitary logistics
    Heuristic optimization
    Variable neighborhood search
    Materia
    Economía
    Economics
    URI
    http://hdl.handle.net/10259/8408
    Versión del editor
    https://doi.org/10.1111/itor.13410
    Aparece en las colecciones
    • Artículos GRINUBUMET
    Attribution-NonCommercial-NoDerivatives 4.0 Internacional
    Documento(s) sujeto(s) a una licencia Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 Internacional
    Ficheros en este ítem
    Nombre:
    Pacheco-itor_2023.pdf
    Tamaño:
    1.863Mb
    Formato:
    Adobe PDF
    Thumbnail
    Visualizar/Abrir

    Métricas

    Citas

    Academic Search
    Ver estadísticas de uso

    Exportar

    RISMendeleyRefworksZotero
    • edm
    • marc
    • xoai
    • qdc
    • ore
    • ese
    • dim
    • uketd_dc
    • oai_dc
    • etdms
    • rdf
    • mods
    • mets
    • didl
    • premis
    Mostrar el registro completo del ítem