Universidad de Burgos RIUBU Principal Default Universidad de Burgos RIUBU Principal Default
  • español
  • English
  • français
  • Deutsch
  • português (Brasil)
  • italiano
Universidad de Burgos RIUBU Principal Default
  • Ayuda
  • Contacto
  • Sugerencias
  • Acceso abierto
    • Archivar en RIUBU
    • Acuerdos editoriales para la publicación en acceso abierto
    • Controla tus derechos, facilita el acceso abierto
    • Sobre el acceso abierto y la UBU
    • español
    • English
    • français
    • Deutsch
    • português (Brasil)
    • italiano
    • español
    • English
    • français
    • Deutsch
    • português (Brasil)
    • italiano
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    Listar

    Todo RIUBUComunidadesFechaAutor / DirectorTítuloMateria / AsignaturaEsta colecciónFechaAutor / DirectorTítuloMateria / Asignatura

    Mi cuenta

    AccederRegistro

    Estadísticas

    Ver Estadísticas de uso

    Compartir

    Ver ítem 
    •   RIUBU Principal
    • E-Prints y Datos de investigación
    • Grupos de investigación
    • Metaheurísticos (GRINUBUMET)
    • Artículos GRINUBUMET
    • Ver ítem
    •   RIUBU Principal
    • E-Prints y Datos de investigación
    • Grupos de investigación
    • Metaheurísticos (GRINUBUMET)
    • Artículos GRINUBUMET
    • Ver ítem

    Por favor, use este identificador para citar o enlazar este ítem: http://hdl.handle.net/10259/8409

    Título
    A multistart tabu search-based method for feature selection in medical applications
    Autor
    Pacheco Bonrostro, JoaquínAutoridad UBU Orcid
    Sáiz Vázquez, OlallaAutoridad UBU Orcid
    Casado Yusta, SilviaAutoridad UBU Orcid
    Ubillos Landa, SilviaAutoridad UBU Orcid
    Publicado en
    Scientific Reports. 2023, V. 13, n. 1
    Editorial
    Springer Nature
    Fecha de publicación
    2023-10
    DOI
    10.1038/s41598-023-44437-4
    Resumen
    In the design of classification models, irrelevant or noisy features are often generated. In some cases, there may even be negative interactions among features. These weaknesses can degrade the performance of the models. Feature selection is a task that searches for a small subset of relevant features from the original set that generate the most efficient models possible. In addition to improving the efficiency of the models, feature selection confers other advantages, such as greater ease in the generation of the necessary data as well as clearer and more interpretable models. In the case of medical applications, feature selection may help to distinguish which characteristics, habits, and factors have the greatest impact on the onset of diseases. However, feature selection is a complex task due to the large number of possible solutions. In the last few years, methods based on different metaheuristic strategies, mainly evolutionary algorithms, have been proposed. The motivation of this work is to develop a method that outperforms previous methods, with the benefits that this implies especially in the medical field. More precisely, the present study proposes a simple method based on tabu search and multistart techniques. The proposed method was analyzed and compared to other methods by testing their performance on several medical databases. Specifically, eight databases belong to the well-known repository of the University of California in Irvine and one of our own design were used. In these computational tests, the proposed method outperformed other recent methods as gauged by various metrics and classifiers. The analyses were accompanied by statistical tests, the results of which showed that the superiority of our method is significant and therefore strengthened these conclusions. In short, the contribution of this work is the development of a method that, on the one hand, is based on different strategies than those used in recent methods, and on the other hand, improves the performance of these methods.
    Materia
    Economía
    Economics
    Medicina
    Medicine
    URI
    http://hdl.handle.net/10259/8409
    Versión del editor
    https://doi.org/10.1038/s41598-023-44437-4
    Aparece en las colecciones
    • Artículos SIQoL
    • Artículos Psicología Evolutiva y de la Educación
    • Artículos GRINUBUMET
    Atribución 4.0 Internacional
    Documento(s) sujeto(s) a una licencia Creative Commons Atribución 4.0 Internacional
    Ficheros en este ítem
    Nombre:
    Pacheco-sr_2023.pdf
    Tamaño:
    1.799Mb
    Formato:
    Adobe PDF
    Thumbnail
    Visualizar/Abrir

    Métricas

    Citas

    Academic Search
    Ver estadísticas de uso

    Exportar

    RISMendeleyRefworksZotero
    • edm
    • marc
    • xoai
    • qdc
    • ore
    • ese
    • dim
    • uketd_dc
    • oai_dc
    • etdms
    • rdf
    • mods
    • mets
    • didl
    • premis
    Mostrar el registro completo del ítem