Universidad de Burgos RIUBU Principal Default Universidad de Burgos RIUBU Principal Default
  • español
  • English
  • français
  • Deutsch
  • português (Brasil)
  • italiano
Universidad de Burgos RIUBU Principal Default
  • Ayuda
  • Contacto
  • Sugerencias
  • Acceso abierto
    • Archivar en RIUBU
    • Acuerdos editoriales para la publicación en acceso abierto
    • Controla tus derechos, facilita el acceso abierto
    • Sobre el acceso abierto y la UBU
    • español
    • English
    • français
    • Deutsch
    • português (Brasil)
    • italiano
    • español
    • English
    • français
    • Deutsch
    • português (Brasil)
    • italiano
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    Listar

    Todo RIUBUComunidadesFechaAutor / DirectorTítuloMateria / AsignaturaEsta colecciónFechaAutor / DirectorTítuloMateria / Asignatura

    Mi cuenta

    AccederRegistro

    Estadísticas

    Ver Estadísticas de uso

    Compartir

    Ver ítem 
    •   RIUBU Principal
    • E-Prints y Datos de investigación
    • Grupos de investigación
    • Inteligencia Computacional Aplicada (GICAP)
    • Artículos GICAP
    • Ver ítem
    •   RIUBU Principal
    • E-Prints y Datos de investigación
    • Grupos de investigación
    • Inteligencia Computacional Aplicada (GICAP)
    • Artículos GICAP
    • Ver ítem

    Por favor, use este identificador para citar o enlazar este ítem: http://hdl.handle.net/10259/8559

    Título
    Optimizing the operating conditions in a high precision industrial process using soft computing techniques
    Autor
    Villar, José R.
    Corchado, EmilioAutoridad UBU Orcid
    Sedano, Javier
    Curiel Herrera, Leticia ElenaAutoridad UBU
    Villar, José Ramón
    Publicado en
    Expert Systems. 2012, V. 29, n. 3, p. 276-299
    Editorial
    Blackwell Publishing
    Fecha de publicación
    2012-07
    ISSN
    0266-4720
    DOI
    10.1111/j.1468-0394.2011.00588.x
    Resumen
    This interdisciplinary research is based on the application of unsupervized connectionist architectures in conjunction with modelling systems and on the determining of the optimal operating conditions of a new high precision industrial process known as laser milling. Laser milling is a relatively new micro-manufacturing technique in the production of high-value industrial components. The industrial problem is defined by a data set relayed through standard sensors situated on a laser-milling centre, which is a machine tool for manufacturing high-value micro-moulds, micro-dies and micro-tools. The new three-phase industrial system presented in this study is capable of identifying a model for the laser-milling process based on low-order models. The first two steps are based on the use of unsupervized connectionist models. The first step involves the analysis of the data sets that define each case study to identify if they are informative enough or if the experiments have to be performed again. In the second step, a feature selection phase is performed to determine the main variables to be processed in the third step. In this last step, the results of the study provide a model for a laser-milling procedure based on low-order models, such as black-box, in order to approximate the optimal form of the laser-milling process. The three-step model has been tested with real data obtained for three different materials: aluminium, cooper and hardened steel. These three materials are used in the manufacture of micro-moulds, micro-coolers and micro-dies, high-value tools for the medical and automotive industries among others. As the model inputs are standard data provided by the laser-milling centre, the industrial implementation of the model is immediate. Thus, this study demonstrates how a high precision industrial process can be improved using a combination of artificial intelligence and identification techniques.
    Palabras clave
    Unsupervized learning
    Exploratory projection pursuit
    Modelling systems
    Industrial applications
    Materia
    Informática
    Computer science
    URI
    http://hdl.handle.net/10259/8559
    Versión del editor
    https://doi.org/10.1111/j.1468-0394.2011.00588.x
    Aparece en las colecciones
    • Artículos GICAP
    Ficheros en este ítem
    Nombre:
    Corchado-es_2012.pdf
    Tamaño:
    1.241Mb
    Formato:
    Adobe PDF
    Descripción:
    Archivo cerrado
    Visualizar/Abrir

    Métricas

    Citas

    Academic Search
    Ver estadísticas de uso

    Exportar

    RISMendeleyRefworksZotero
    • edm
    • marc
    • xoai
    • qdc
    • ore
    • ese
    • dim
    • uketd_dc
    • oai_dc
    • etdms
    • rdf
    • mods
    • mets
    • didl
    • premis
    Mostrar el registro completo del ítem