Universidad de Burgos RIUBU Principal Default Universidad de Burgos RIUBU Principal Default
  • español
  • English
  • français
  • Deutsch
  • português (Brasil)
  • italiano
Universidad de Burgos RIUBU Principal Default
  • Ayuda
  • Contacto
  • Sugerencias
  • Acceso abierto
    • Archivar en RIUBU
    • Acuerdos editoriales para la publicación en acceso abierto
    • Controla tus derechos, facilita el acceso abierto
    • Sobre el acceso abierto y la UBU
    • español
    • English
    • français
    • Deutsch
    • português (Brasil)
    • italiano
    • español
    • English
    • français
    • Deutsch
    • português (Brasil)
    • italiano
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    Listar

    Todo RIUBUComunidadesFechaAutor / DirectorTítuloMateria / AsignaturaEsta colecciónFechaAutor / DirectorTítuloMateria / Asignatura

    Mi cuenta

    AccederRegistro

    Estadísticas

    Ver Estadísticas de uso

    Compartir

    Ver ítem 
    •   RIUBU Principal
    • E-Prints y Datos de investigación
    • Grupos de investigación
    • Inteligencia Computacional Aplicada (GICAP)
    • Monografías / Capítulos de monografía GICAP
    • Ver ítem
    •   RIUBU Principal
    • E-Prints y Datos de investigación
    • Grupos de investigación
    • Inteligencia Computacional Aplicada (GICAP)
    • Monografías / Capítulos de monografía GICAP
    • Ver ítem

    Por favor, use este identificador para citar o enlazar este ítem: http://hdl.handle.net/10259/8577

    Título
    Complications Detection in Treatment for Bacterial Endocarditis
    Autor
    Curiel Herrera, Leticia ElenaAutoridad UBU
    Baruque Zanón, BrunoAutoridad UBU Orcid
    Dueñas, Carlos
    Corchado, EmilioAutoridad UBU Orcid
    Pérez, Cristina
    Publicado en
    Advances in Intelligent and Soft Computing. 2011, V. 91, p. 241-248
    Editorial
    Springer Nature
    Fecha de publicación
    2011
    ISSN
    1867-5662
    DOI
    10.1007/978-3-642-19934-9_30
    Descripción
    Trabajo presentado en: International Symposium on Distributed Computing and Artificial Intelligence, 2011
    Resumen
    This study proposes the use of decision trees to detect possible complications in a critical disease called endocarditis. The endocarditis illness could produce heart failure, stroke, kidney failure, emboli, immunological disorders and death. The aim is to obtained a tree decision classifier based on the symptoms (attributes) of patients (the data instances) observed by doctors to predict the possible complications that can occur when a patient is in treatment of bacterial endocarditis and thus, help doctors to make an early diagnose so that they can treat more effectively the infection and aid to a patient faster recovery. The results obtained using a real data set, show that with the information extracted form each case in an early stage of the development of the patient a quite accurate idea of the complications that can arise can be extracted.
    Palabras clave
    Decision Tree
    Infective Endocarditis
    Bacterial Endocarditis
    Kernel Cluster
    Case Base Reasoning System
    Materia
    Informática
    Computer science
    Medicina
    Medicine
    URI
    http://hdl.handle.net/10259/8577
    Versión del editor
    https://doi.org/10.1007/978-3-642-19934-9_30
    Aparece en las colecciones
    • Ponencias / Comunicaciones de congresos GICAP
    • Monografías / Capítulos de monografía GICAP
    Ficheros en este ítem
    Nombre:
    Curiel-Complications_detection_treatment_bacterial_2011.pdf
    Tamaño:
    260.0Kb
    Formato:
    Adobe PDF
    Thumbnail
    Visualizar/Abrir

    Métricas

    Citas

    Academic Search
    Ver estadísticas de uso

    Exportar

    RISMendeleyRefworksZotero
    • edm
    • marc
    • xoai
    • qdc
    • ore
    • ese
    • dim
    • uketd_dc
    • oai_dc
    • etdms
    • rdf
    • mods
    • mets
    • didl
    • premis
    Mostrar el registro completo del ítem