Universidad de Burgos RIUBU Principal Default Universidad de Burgos RIUBU Principal Default
  • español
  • English
  • français
  • Deutsch
  • português (Brasil)
  • italiano
Universidad de Burgos RIUBU Principal Default
  • Ayuda
  • Contacto
  • Sugerencias
  • Acceso abierto
    • Archivar en RIUBU
    • Acuerdos editoriales para la publicación en acceso abierto
    • Controla tus derechos, facilita el acceso abierto
    • Sobre el acceso abierto y la UBU
    • español
    • English
    • français
    • Deutsch
    • português (Brasil)
    • italiano
    • español
    • English
    • français
    • Deutsch
    • português (Brasil)
    • italiano
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    Listar

    Todo RIUBUComunidadesFechaAutor / DirectorTítuloMateria / AsignaturaEsta colecciónFechaAutor / DirectorTítuloMateria / Asignatura

    Mi cuenta

    AccederRegistro

    Estadísticas

    Ver Estadísticas de uso

    Compartir

    Ver ítem 
    •   RIUBU Principal
    • E-Prints y Datos de investigación
    • Grupos de investigación
    • Inteligencia Computacional Aplicada (GICAP)
    • Monografías / Capítulos de monografía GICAP
    • Ver ítem
    •   RIUBU Principal
    • E-Prints y Datos de investigación
    • Grupos de investigación
    • Inteligencia Computacional Aplicada (GICAP)
    • Monografías / Capítulos de monografía GICAP
    • Ver ítem

    Por favor, use este identificador para citar o enlazar este ítem: http://hdl.handle.net/10259/8580

    Título
    Improving Energy Efficiency in Buildings Using Machine Intelligence
    Autor
    Sedano, Javier
    Villar, José Ramón
    Curiel Herrera, Leticia ElenaAutoridad UBU Orcid
    Cal, Enrique de la
    Corchado, EmilioAutoridad UBU Orcid
    Publicado en
    Lecture Notes in Computer Science. 2009, V. 5788, p. 773-782
    Editorial
    Springer Nature
    Fecha de publicación
    2009
    ISSN
    0302-9743
    DOI
    10.1007/978-3-642-04394-9_95
    Descripción
    Trabajo presentado en: International Conference on Intelligent Data Engineering and Automated Learning, 2009
    Resumen
    Improving the detection of thermal insulation in buildings –which includes the development of models for heating and ventilation processes and fabric gain - could significantly increase building energy efficiency and substantially contribute to reductions in energy consumption and in the carbon footprints of domestic heating systems. Thermal insulation standards are now contractual obligations in new buildings, although poor energy efficiency is often a defining characteristic of buildings built before the introduction of those standards. Lighting, occupancy, set point temperature profiles, air conditioning and ventilation services all increase the complexity of measuring insulation efficiency. The identification of thermal insulation failure can help to reduce energy consumption in heating systems. Conventional methods can be greatly improved through the application of hybridized machine learning techniques to detect thermal insulation failures when a building is in operation. A three-step procedure is proposed in this paper that begins by considering the local building and heating system regulations as well as the specific features of the climate zone. Firstly, the dynamic thermal performance of different variables is specifically modelled, for each building type and climate zone. Secondly, Cooperative Maximum-Likelihood Hebbian Learning is used to extract the relevant features. Finally, neural projections and identification techniques are applied, in order to detect fluctuations in room temperatures and, in consequence, thermal insulation failures. The reliability of the proposed method is validated in three winter zone C cities in Spain. Although a great deal of further research remains to be done in this field, the proposed system is expected to outperform conventional methods described in Spanish building codes that are used to calculate energetic profiles in domestic and residential buildings.
    Palabras clave
    Feature selection
    Heating System
    Machine Intelligence
    Improve Energy Efficiency
    Indoor Temperature
    Materia
    Informática
    Computer science
    URI
    http://hdl.handle.net/10259/8580
    Versión del editor
    https://doi.org/10.1007/978-3-642-04394-9_95
    Aparece en las colecciones
    • Ponencias / Comunicaciones de congresos GICAP
    • Monografías / Capítulos de monografía GICAP
    Ficheros en este ítem
    Nombre:
    Sedano-Improving_efficiency_buildings_machine_intelligence_2009.pdf
    Tamaño:
    192.2Kb
    Formato:
    Adobe PDF
    Thumbnail
    Visualizar/Abrir

    Métricas

    Citas

    Academic Search
    Ver estadísticas de uso

    Exportar

    RISMendeleyRefworksZotero
    • edm
    • marc
    • xoai
    • qdc
    • ore
    • ese
    • dim
    • uketd_dc
    • oai_dc
    • etdms
    • rdf
    • mods
    • mets
    • didl
    • premis
    Mostrar el registro completo del ítem