Universidad de Burgos RIUBU Principal Default Universidad de Burgos RIUBU Principal Default
  • español
  • English
  • français
  • Deutsch
  • português (Brasil)
  • italiano
Universidad de Burgos RIUBU Principal Default
  • Ayuda
  • Contacto
  • Sugerencias
  • Acceso abierto
    • Archivar en RIUBU
    • Acuerdos editoriales para la publicación en acceso abierto
    • Controla tus derechos, facilita el acceso abierto
    • Sobre el acceso abierto y la UBU
    • español
    • English
    • français
    • Deutsch
    • português (Brasil)
    • italiano
    • español
    • English
    • français
    • Deutsch
    • português (Brasil)
    • italiano
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    Listar

    Todo RIUBUComunidadesFechaAutor / DirectorTítuloMateria / AsignaturaEsta colecciónFechaAutor / DirectorTítuloMateria / Asignatura

    Mi cuenta

    AccederRegistro

    Estadísticas

    Ver Estadísticas de uso

    Compartir

    Ver ítem 
    •   RIUBU Principal
    • E-Prints y Datos de investigación
    • Grupos de investigación
    • Inteligencia Computacional Aplicada (GICAP)
    • Artículos GICAP
    • Ver ítem
    •   RIUBU Principal
    • E-Prints y Datos de investigación
    • Grupos de investigación
    • Inteligencia Computacional Aplicada (GICAP)
    • Artículos GICAP
    • Ver ítem

    Por favor, use este identificador para citar o enlazar este ítem: http://hdl.handle.net/10259/8582

    Título
    Learning and training techniques in fuzzy control for energy efficiency in buildings
    Autor
    Sedano, Javier
    Villar, José Ramón
    Curiel Herrera, Leticia ElenaAutoridad UBU
    Corchado, EmilioAutoridad UBU Orcid
    Cal, Enrique de la
    Publicado en
    Logic Journal of the IGPL. 2012, V. 20, n. 4, p. 757-769
    Editorial
    Oxford University Press
    Fecha de publicación
    2011-02
    ISSN
    1367-0751
    DOI
    10.1093/jigpal/jzr022
    Resumen
    A novel procedure for learning Fuzzy Controllers (FC) is proposed that concerns with energy efficiency issues in distributing electrical energy to heaters in an electrical energy heating system. Energy rationalization together with temperature control can significantly improve energy efficiency, by efficiently controlling electrical heating systems and electrical energy consumption. The novel procedure, which improves the training process, is designed to train the FC, as well as to run the control algorithm and to carry out energy distribution. Firstly, the dynamic thermal performance of different variables is mathematically modelled for each specific building type and climate zone. Secondly, an exploratory projection pursuit method is used to extract the relevant features. Finally, a supervised dynamic neural network model and identification techniques are applied to FC learning and training. The FC rule-set and parameter-set learning process is a multi-objective problem that minimizes both the indoor temperature error and the energy deficit in the house. The reliability of the proposed procedure is validated for a city in a winter zone in Spain.
    Palabras clave
    Computational Intelligence
    Soft computing Systems
    Mathematical and Identification Systems
    Artificial Neural Networks
    Non-linear Systems
    Materia
    Informática
    Computer science
    Matemáticas
    Mathematics
    URI
    http://hdl.handle.net/10259/8582
    Versión del editor
    https://doi.org/10.1093/jigpal/jzr022
    Aparece en las colecciones
    • Artículos GICAP
    Ficheros en este ítem
    Nombre:
    Sedano-ljigpl_2011.pdf
    Tamaño:
    204.9Kb
    Formato:
    Adobe PDF
    Thumbnail
    Visualizar/Abrir

    Métricas

    Citas

    Academic Search
    Ver estadísticas de uso

    Exportar

    RISMendeleyRefworksZotero
    • edm
    • marc
    • xoai
    • qdc
    • ore
    • ese
    • dim
    • uketd_dc
    • oai_dc
    • etdms
    • rdf
    • mods
    • mets
    • didl
    • premis
    Mostrar el registro completo del ítem