Universidad de Burgos RIUBU Principal Default Universidad de Burgos RIUBU Principal Default
  • español
  • English
  • français
  • Deutsch
  • português (Brasil)
  • italiano
Universidad de Burgos RIUBU Principal Default
  • Ayuda
  • Contacto
  • Sugerencias
  • Acceso abierto
    • Archivar en RIUBU
    • Acuerdos editoriales para la publicación en acceso abierto
    • Controla tus derechos, facilita el acceso abierto
    • Sobre el acceso abierto y la UBU
    • español
    • English
    • français
    • Deutsch
    • português (Brasil)
    • italiano
    • español
    • English
    • français
    • Deutsch
    • português (Brasil)
    • italiano
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    Listar

    Todo RIUBUComunidadesFechaAutor / DirectorTítuloMateria / AsignaturaEsta colecciónFechaAutor / DirectorTítuloMateria / Asignatura

    Mi cuenta

    AccederRegistro

    Estadísticas

    Ver Estadísticas de uso

    Compartir

    Ver ítem 
    •   RIUBU Principal
    • E-Prints y Datos de investigación
    • Grupos de investigación
    • Advanced Data Mining Research and Bioinformatics Learning (ADMIRABLE)
    • Artículos ADMIRABLE
    • Ver ítem
    •   RIUBU Principal
    • E-Prints y Datos de investigación
    • Grupos de investigación
    • Advanced Data Mining Research and Bioinformatics Learning (ADMIRABLE)
    • Artículos ADMIRABLE
    • Ver ítem

    Por favor, use este identificador para citar o enlazar este ítem: http://hdl.handle.net/10259/9282

    Título
    Semi-supervised learning for industrial fault detection and diagnosis: A systemic review
    Autor
    Ramírez Sanz, José MiguelAutoridad UBU Orcid
    Maestro Prieto, José AlbertoAutoridad UBU Orcid
    Arnaiz González, ÁlvarAutoridad UBU Orcid
    Bustillo Iglesias, AndrésAutoridad UBU Orcid
    Publicado en
    ISA Transactions. 2023, V. 143, p. 255-270
    Editorial
    Elsevier
    Fecha de publicación
    2023-12
    ISSN
    0019-0578
    DOI
    10.1016/j.isatra.2023.09.027
    Resumen
    The automation of Fault Detection and Diagnosis (FDD) is a central task for many industries today. A myriad of methods are in use, although the most recent leading contenders are data-driven approaches and especially Machine Learning (ML) methods. ML algorithms fall into two main categories: supervised and unsupervised methods, depending on whether or not the instances are labeled with the expected outputs. However, a new approach called Semi-Supervised Learning (SSL) has recently emerged that uses a few labeled instances together with other unlabeled instances for the training process. This new approach can significantly improve the accuracy of conventional ML models for industrial environments where labeled data are scarce. SSL has been tested as a promising solution over the past few years for several FDD problems, although there have been no systemic reviews of this sort of approach up until the present review. In this study, an attempt to organize the existing literature on SSL for FDD using the taxonomy of van Engelen & Hoos is reported. The most and the least frequently used SSL algorithms are identified and considered in terms of different fault detection tasks and their most common dataset structure. Moreover, a set of best practices are proposed in the conclusions of this work for implementation under real industrial conditions, so as to avoid some of the most common faults.
    Palabras clave
    Industrial fault detection and diagnosis
    Machine learning
    Semi-supervised learning
    Systemic review
    Vibrations
    Materia
    Informática
    Computer science
    Bioinformática
    Bioinformatics
    URI
    http://hdl.handle.net/10259/9282
    Versión del editor
    https://doi.org/10.1016/j.isatra.2023.09.027
    Aparece en las colecciones
    • Artículos ADMIRABLE
    Atribución 4.0 Internacional
    Documento(s) sujeto(s) a una licencia Creative Commons Atribución 4.0 Internacional
    Ficheros en este ítem
    Nombre:
    Ramirez-isat_2023.pdf
    Tamaño:
    1014.Kb
    Formato:
    Adobe PDF
    Thumbnail
    Visualizar/Abrir

    Métricas

    Citas

    Academic Search
    Ver estadísticas de uso

    Exportar

    RISMendeleyRefworksZotero
    • edm
    • marc
    • xoai
    • qdc
    • ore
    • ese
    • dim
    • uketd_dc
    • oai_dc
    • etdms
    • rdf
    • mods
    • mets
    • didl
    • premis
    Mostrar el registro completo del ítem