Universidad de Burgos RIUBU Principal Default Universidad de Burgos RIUBU Principal Default
  • español
  • English
  • français
  • Deutsch
  • português (Brasil)
  • italiano
Universidad de Burgos RIUBU Principal Default
  • Ayuda
  • Contacto
  • Sugerencias
  • Acceso abierto
    • Archivar en RIUBU
    • Acuerdos editoriales para la publicación en acceso abierto
    • Controla tus derechos, facilita el acceso abierto
    • Sobre el acceso abierto y la UBU
    • español
    • English
    • français
    • Deutsch
    • português (Brasil)
    • italiano
    • español
    • English
    • français
    • Deutsch
    • português (Brasil)
    • italiano
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    Listar

    Todo RIUBUComunidadesFechaAutor / DirectorTítuloMateria / AsignaturaEsta colecciónFechaAutor / DirectorTítuloMateria / Asignatura

    Mi cuenta

    AccederRegistro

    Estadísticas

    Ver Estadísticas de uso

    Compartir

    Ver ítem 
    •   RIUBU Principal
    • E-Prints y Datos de investigación
    • Departamentos y Centros
    • Departamento de Ingeniería Electromecánica
    • Área de Ingeniería Mecánica
    • Artículos Ingeniería Mecánica
    • Ver ítem
    •   RIUBU Principal
    • E-Prints y Datos de investigación
    • Departamentos y Centros
    • Departamento de Ingeniería Electromecánica
    • Área de Ingeniería Mecánica
    • Artículos Ingeniería Mecánica
    • Ver ítem

    Por favor, use este identificador para citar o enlazar este ítem: http://hdl.handle.net/10259/9293

    Título
    Vibration-based monitoring of agro-industrial machinery using a k-Nearest Neighbors (kNN) classifier with a Harmony Search (HS) frequency selector algorithm
    Autor
    Gómez Gil, Francisco JavierAutoridad UBU Orcid
    Martínez-Martínez, Víctor
    Ruiz González, RubénAutoridad UBU Orcid
    Martínez Martínez, Lidia
    Gómez Gil, Jaime
    Publicado en
    Computers and Electronics in Agriculture. 2024, V. 217, 108556
    Editorial
    Elsevier
    Fecha de publicación
    2024-02
    ISSN
    0168-1699
    DOI
    10.1016/j.compag.2023.108556
    Resumen
    Monitoring the status of rotating components is important in modern machinery. The goal of this study is to evaluate the feasibility of using a k-Nearest Neighbors (kNN) classifier combined with a Harmony Search (HS) algorithm, to detect the operational status of rotating components within agricultural machines. Vibration data, the source data, were acquired from four accelerometers located along the chassis of a harvester. Five operational statuses of three rotating components of the harvester were studied: engine (low/maximum speed), thresher, and chopper (on/off and balanced/unbalanced). The methodology includes vibration signal acquisition, data preprocessing, smoothing, preselection of frequencies, Brute Force (BF) and Harmony Search frequency selection, and classification with kNN. The input frequencies for the classifier were chosen with either BF search or HS. The main results of the study were: i) the preselection of frequencies reduced the training time between 92.2% and 95.6%; ii) the smoothing stage improved accuracy; iii) HS reduced the training time between 82% and 90% in comparison with BF, reaching accuracies of nearly 100% in the five operational statuses with only 2 input frequencies; iv) similar levels of accuracy were obtained when using data from the accelerometers at different locations. The results suggested that it was feasible to predict the operational status of rotating components of agricultural machines using a kNN classifier with the combination of preselection, smoothing, and the HS algorithm. This feasibility was achieved both in terms of accuracy and computational burden, building upon previously proposed methods.
    Palabras clave
    k-Nearest Neighbors (kNN)
    Harmony Search (HS) algorithm
    Vibrations
    Accelerometer
    Machinery monitoring
    Rotating components
    Frequency selection
    Materia
    Ingeniería mecánica
    Mechanical engineering
    URI
    http://hdl.handle.net/10259/9293
    Versión del editor
    https://doi.org/10.1016/j.compag.2023.108556
    Aparece en las colecciones
    • Artículos ARCO
    • Artículos Ingeniería Mecánica
    Atribución 4.0 Internacional
    Documento(s) sujeto(s) a una licencia Creative Commons Atribución 4.0 Internacional
    Ficheros en este ítem
    Nombre:
    Gomez-cea_2024.pdf
    Tamaño:
    1.270Mb
    Formato:
    Adobe PDF
    Thumbnail
    Visualizar/Abrir

    Métricas

    Citas

    Academic Search
    Ver estadísticas de uso

    Exportar

    RISMendeleyRefworksZotero
    • edm
    • marc
    • xoai
    • qdc
    • ore
    • ese
    • dim
    • uketd_dc
    • oai_dc
    • etdms
    • rdf
    • mods
    • mets
    • didl
    • premis
    Mostrar el registro completo del ítem