Universidad de Burgos RIUBU Principal Default Universidad de Burgos RIUBU Principal Default
  • español
  • English
  • français
  • Deutsch
  • português (Brasil)
  • italiano
Universidad de Burgos RIUBU Principal Default
  • Ayuda
  • Contacto
  • Sugerencias
  • Acceso abierto
    • Archivar en RIUBU
    • Acuerdos editoriales para la publicación en acceso abierto
    • Controla tus derechos, facilita el acceso abierto
    • Sobre el acceso abierto y la UBU
    • español
    • English
    • français
    • Deutsch
    • português (Brasil)
    • italiano
    • español
    • English
    • français
    • Deutsch
    • português (Brasil)
    • italiano
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    Listar

    Todo RIUBUComunidadesFechaAutor / DirectorTítuloMateria / AsignaturaEsta colecciónFechaAutor / DirectorTítuloMateria / Asignatura

    Mi cuenta

    AccederRegistro

    Estadísticas

    Ver Estadísticas de uso

    Compartir

    Ver ítem 
    •   RIUBU Principal
    • E-Prints y Datos de investigación
    • Grupos de investigación
    • Grupo de Investigación en Automatización, Robótica, Control y Optimización (ARCO)
    • Artículos ARCO
    • Ver ítem
    •   RIUBU Principal
    • E-Prints y Datos de investigación
    • Grupos de investigación
    • Grupo de Investigación en Automatización, Robótica, Control y Optimización (ARCO)
    • Artículos ARCO
    • Ver ítem

    Por favor, use este identificador para citar o enlazar este ítem: http://hdl.handle.net/10259/9331

    Título
    GBNN algorithm enhanced by movement planner for UV‐C disinfection
    Autor
    Rodrigo, Daniel Vicente
    Sierra Garcia, Jesús EnriqueAutoridad UBU Orcid
    Santos, Matilde
    Publicado en
    Expert Systems. 2023, V. 40, n. 10
    Editorial
    Wiley
    Fecha de publicación
    2023-09-22
    ISSN
    0266-4720
    DOI
    10.1111/exsy.13455
    Resumen
    In order to maintain adequate levels of cleanliness and sanitation in public facilities, prevent the buildup of viruses and other harmful pathogens, and ensure health and safety, health and labor authorities have repeatedly warned of the need to adhere to proper disinfection protocols in the workplace. This is particularly important in public places where food is handled, where there are more vulnerable people, including hospitals and health care centers, or where there is a large concentration of people. One promising approach is the combination of ultraviolet-C (UV-C) light and mobile robots to automate disinfection processes. Being this technology effective for disinfection, an excessive dose of UV can damage the materials, limiting its applicability. Therefore, a major challenge for automatic disinfection is to find a route that covers the entire surface, ensures cleanliness, and provides the correct radiation dose while preventing environmental materials from being damaged. To achieve this, in this paper a novel intelligent control approach is proposed. A bio-inspired Glasius neural network with a motion planner, an UV estimation module, a speed regulator, and pure pursuit controller are combined into one intelligent system. The motion planner proposes a sequence of movements to go through the space in the most efficient way possible, avoiding obstacles of the environment. The speed controller adjusts the dose of UV-C radiation and the pure pursuit regulator ensures the following of the path. This approach has been tested in various simulation scenarios of increasing complexity and in four different areas of dosing requirements. In simulation, a 44% reduction of the maximum dose is achieved, 17% less distance travelled by the robot and, what is more important, 229% more locations with the appropriate dose.
    Palabras clave
    Autonomous robot
    Complete coverage path planning
    Glasius bio-inspired neural network
    Ultraviolet germicidal irradiation
    Materia
    Ingeniería mecánica
    Mechanical engineering
    Electrotecnia
    Electrical engineering
    URI
    http://hdl.handle.net/10259/9331
    Versión del editor
    https://doi.org/10.1111/exsy.13455
    Aparece en las colecciones
    • Artículos ARCO
    Atribución-NoComercial 4.0 Internacional
    Documento(s) sujeto(s) a una licencia Creative Commons Atribución-NoComercial 4.0 Internacional
    Ficheros en este ítem
    Nombre:
    Rodrigo-ex_2023.pdf
    Tamaño:
    10.16Mb
    Formato:
    Adobe PDF
    Thumbnail
    Visualizar/Abrir

    Métricas

    Citas

    Academic Search
    Ver estadísticas de uso

    Exportar

    RISMendeleyRefworksZotero
    • edm
    • marc
    • xoai
    • qdc
    • ore
    • ese
    • dim
    • uketd_dc
    • oai_dc
    • etdms
    • rdf
    • mods
    • mets
    • didl
    • premis
    Mostrar el registro completo del ítem