Universidad de Burgos RIUBU Principal Default Universidad de Burgos RIUBU Principal Default
  • español
  • English
  • français
  • Deutsch
  • português (Brasil)
  • italiano
Universidad de Burgos RIUBU Principal Default
  • Ayuda
  • Contacto
  • Sugerencias
  • Acceso abierto
    • Archivar en RIUBU
    • Acuerdos editoriales para la publicación en acceso abierto
    • Controla tus derechos, facilita el acceso abierto
    • Sobre el acceso abierto y la UBU
    • español
    • English
    • français
    • Deutsch
    • português (Brasil)
    • italiano
    • español
    • English
    • français
    • Deutsch
    • português (Brasil)
    • italiano
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    Listar

    Todo RIUBUComunidadesFechaAutor / DirectorTítuloMateria / AsignaturaEsta colecciónFechaAutor / DirectorTítuloMateria / Asignatura

    Mi cuenta

    AccederRegistro

    Estadísticas

    Ver Estadísticas de uso

    Compartir

    Ver ítem 
    •   RIUBU Principal
    • E-Prints y Datos de investigación
    • Grupos de investigación
    • Inteligencia Computacional Aplicada (GICAP)
    • Ponencias / Comunicaciones de congresos GICAP
    • Ver ítem
    •   RIUBU Principal
    • E-Prints y Datos de investigación
    • Grupos de investigación
    • Inteligencia Computacional Aplicada (GICAP)
    • Ponencias / Comunicaciones de congresos GICAP
    • Ver ítem

    Por favor, use este identificador para citar o enlazar este ítem: http://hdl.handle.net/10259/9356

    Título
    A Cooperative Unsupervised Connectionist Model to Identify the Optimal Conditions of a Pneumatic Drill
    Autor
    Corchado, EmilioAutoridad UBU Orcid
    Curiel Herrera, Leticia ElenaAutoridad UBU Orcid
    Bravo Díez, Pedro MiguelAutoridad UBU Orcid
    Publicado en
    Soft Computing as Transdisciplinary Science and Technology, n. 29, p. 725-734
    Editorial
    Springer Nature
    Fecha de publicación
    2005
    ISBN
    978-3-540-25055-5
    DOI
    10.1007/3-540-32391-0_77
    Descripción
    Trabajo presentado en: 4th IEEE International Workshop (WSTST), realizado el 25, 26 y 27 de mayo 2005, en Muroran (Japón)
    Resumen
    A novel connectionist method to feature selection is proposed in this paper to identify the optimal conditions to perform drilling tasks. The aim is to extract information from complex high dimensional data sets. The model used is based on a family of cost functions which maximizes the likelihood of identifying a specific distribution in a data set. It employs lateral connections derived from the Rectified Gaussian Distribution to enforce a more sparse representation in each weight vector. The data investigated is obtained from the sensors allocated in a robot used to drill and build industrial warehouses. It is hoped that in classifying this data related with the strength, the water volume for refrigerating, speed and time of each sample, it will help in the search of the best conditions to perform the drilling of reinforce concrete slabs. This would produce a great saving for the company which owns the drilling robot.
    Materia
    Informática
    Computer science
    Ingeniería civil
    Civil engineering
    URI
    http://hdl.handle.net/10259/9356
    Versión del editor
    https://doi.org/10.1007/3-540-32391-0_77
    Aparece en las colecciones
    • Ponencias / Comunicaciones de congresos GICAP
    Ficheros en este ítem
    Nombre:
    Corchado-Cooperative_Unsupervised_Connectionist_2005.pdf
    Tamaño:
    154.7Kb
    Formato:
    Adobe PDF
    Thumbnail
    Visualizar/Abrir

    Métricas

    Citas

    Academic Search
    Ver estadísticas de uso

    Exportar

    RISMendeleyRefworksZotero
    • edm
    • marc
    • xoai
    • qdc
    • ore
    • ese
    • dim
    • uketd_dc
    • oai_dc
    • etdms
    • rdf
    • mods
    • mets
    • didl
    • premis
    Mostrar el registro completo del ítem