Universidad de Burgos RIUBU Principal Default Universidad de Burgos RIUBU Principal Default
  • español
  • English
  • français
  • Deutsch
  • português (Brasil)
  • italiano
Universidad de Burgos RIUBU Principal Default
  • Ayuda
  • Contacto
  • Sugerencias
  • Acceso abierto
    • Archivar en RIUBU
    • Acuerdos editoriales para la publicación en acceso abierto
    • Controla tus derechos, facilita el acceso abierto
    • Sobre el acceso abierto y la UBU
    • español
    • English
    • français
    • Deutsch
    • português (Brasil)
    • italiano
    • español
    • English
    • français
    • Deutsch
    • português (Brasil)
    • italiano
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    Listar

    Todo RIUBUComunidadesFechaAutor / DirectorTítuloMateria / AsignaturaEsta colecciónFechaAutor / DirectorTítuloMateria / Asignatura

    Mi cuenta

    AccederRegistro

    Estadísticas

    Ver Estadísticas de uso

    Compartir

    Ver ítem 
    •   RIUBU Principal
    • E-Prints y Datos de investigación
    • Grupos de investigación
    • Advanced Data Mining Research and Bioinformatics Learning (ADMIRABLE)
    • Artículos ADMIRABLE
    • Ver ítem
    •   RIUBU Principal
    • E-Prints y Datos de investigación
    • Grupos de investigación
    • Advanced Data Mining Research and Bioinformatics Learning (ADMIRABLE)
    • Artículos ADMIRABLE
    • Ver ítem

    Por favor, use este identificador para citar o enlazar este ítem: http://hdl.handle.net/10259/9517

    Título
    A Virtual Reality Environment Based on Infrared Thermography for the Detection of Multiple Faults in Kinematic Chains
    Autor
    Alvarado-Hernandez, Alvaro Ivan
    Checa Cruz, DavidAutoridad UBU Orcid
    Osornio-Ríos, Roque Alfredo
    Bustillo Iglesias, AndrésAutoridad UBU Orcid
    Antonino Daviu, Jose A.
    Publicado en
    Electronics. 2024, V. 13, n. 13, 2447
    Editorial
    MDPI
    Fecha de publicación
    2024-06-22
    ISSN
    2079-9292
    DOI
    10.3390/electronics13132447
    Resumen
    Kinematic chains are crucial in numerous industrial settings, playing a key role in various processes. Over recent years, several methods have been developed to monitor and maintain these systems effectively. One notable method is the analysis of infrared thermal images, which serves as a non-invasive and effective approach for identifying various electromechanical issues. Additionally, Virtual Reality (VR) is a burgeoning technology that, despite its limited use in industrial contexts, offers a cost-effective and accessible solution for the training and education of industrial workers on specialized engineering subjects. Nevertheless, most virtual environments are based on numerical simulations. This paper presents the design and development of a Virtual Reality training module for the detection of fourteen electromechanical fault cases in a kinematic chain. The VR training tool developed is based on actual thermographic data derived from experiments conducted on an authentic kinematic chain. During these experiments, thermal images were captured using an low-cost infrared sensor. The thermographic images were processed by calculating the histogram and fifteen statistical indicators, which served to differentiate fault cases in the VR application. A comprehensive evaluation was carried out with a group of vocational students specialized in electrical and automation installations to determine the effectiveness and practicality of the VR training module.
    Palabras clave
    Digital image processing
    Fault detection
    Induction motors
    Infrared imaging
    Virtual reality
    Materia
    Informática
    Computer science
    URI
    http://hdl.handle.net/10259/9517
    Versión del editor
    https://doi.org/10.3390/electronics13132447
    Aparece en las colecciones
    • Artículos ADMIRABLE
    Atribución 4.0 Internacional
    Documento(s) sujeto(s) a una licencia Creative Commons Atribución 4.0 Internacional
    Ficheros en este ítem
    Nombre:
    Alvarado-electronics_2024.pdf
    Tamaño:
    6.560Mb
    Formato:
    Adobe PDF
    Thumbnail
    Visualizar/Abrir

    Métricas

    Citas

    Academic Search
    Ver estadísticas de uso

    Exportar

    RISMendeleyRefworksZotero
    • edm
    • marc
    • xoai
    • qdc
    • ore
    • ese
    • dim
    • uketd_dc
    • oai_dc
    • etdms
    • rdf
    • mods
    • mets
    • didl
    • premis
    Mostrar el registro completo del ítem