Universidad de Burgos RIUBU Principal Default Universidad de Burgos RIUBU Principal Default
  • español
  • English
  • français
  • Deutsch
  • português (Brasil)
  • italiano
Universidad de Burgos RIUBU Principal Default
  • Ayuda
  • Contacto
  • Sugerencias
  • Acceso abierto
    • Archivar en RIUBU
    • Acuerdos editoriales para la publicación en acceso abierto
    • Controla tus derechos, facilita el acceso abierto
    • Sobre el acceso abierto y la UBU
    • español
    • English
    • français
    • Deutsch
    • português (Brasil)
    • italiano
    • español
    • English
    • français
    • Deutsch
    • português (Brasil)
    • italiano
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    Listar

    Todo RIUBUComunidadesFechaAutor / DirectorTítuloMateria / AsignaturaEsta colecciónFechaAutor / DirectorTítuloMateria / Asignatura

    Mi cuenta

    AccederRegistro

    Estadísticas

    Ver Estadísticas de uso

    Compartir

    Ver ítem 
    •   RIUBU Principal
    • E-Prints y Datos de investigación
    • Grupos de investigación
    • Grupo de Investigación en Automatización, Robótica, Control y Optimización (ARCO)
    • Artículos ARCO
    • Ver ítem
    •   RIUBU Principal
    • E-Prints y Datos de investigación
    • Grupos de investigación
    • Grupo de Investigación en Automatización, Robótica, Control y Optimización (ARCO)
    • Artículos ARCO
    • Ver ítem

    Por favor, use este identificador para citar o enlazar este ítem: http://hdl.handle.net/10259/9682

    Título
    A data fusion system of GNSS data and on-vehicle sensors data for improving car positioning precision in urban environments
    Autor
    Melendez-Pastor, Carlos
    Ruiz González, RubénAutoridad UBU Orcid
    Gómez Gil, Jaime
    Publicado en
    Expert Systems with Applications. 2017, V. 80, p. 28-38
    Editorial
    Elsevier
    Fecha de publicación
    2017-03
    ISSN
    0957-4174
    DOI
    10.1016/j.eswa.2017.03.018
    Resumen
    Accurate car positioning on the Earth's surface is a requirement for many state-of-the-art automotive applications, but current low-cost Global Navigation Satellite System (GNSS) receivers can suffer from poor precision and transient unavailability in urban areas. In this article, a real-time data fusion system of absolute and relative positioning data is proposed with the aim of increasing car positioning precision. To achieve this goal, a system based on the Extended Kalman Filter (EKF) was employed to fuse absolute positioning data coming from a low-cost GNSS receiver with data coming from four wheel speed sensors, a lateral acceleration sensor, and a steering wheel angle sensor. The bicycle kinematic model and the Ackerman steering geometry were employed to particularize the EKF. The proposed system was evaluated through experimental tests. The results showed precision improvements of up to 50% in terms of the Root Mean Square Error (RMSE), 50% in terms of the 95th-percentile of the distance error distribution, and 75% in terms of the maximum distance error, with respect to using a stand-alone, low-cost GNSS receiver. These results suggest that the proposed data fusion system for car vehicles can significantly reduce the positioning error with respect to the positioning error of a low-cost GNSS receiver. The best precision improvements of the system are expected to be achieved in urban areas, where tall buildings hinder the effectiveness of GNSS systems. The main contribution of this work is the proposal of a novel system that enables accurate car positioning during short GNSS signal outages. This advance could be integrated in larger expert and intelligent systems such as autonomous cars, helping to make self-driving easier and safer.
    Palabras clave
    Data fusion
    Extended Kalman Filter (EFK)
    Global navigation satellite system (GNSS)
    On-vehicle sensors
    On-board diagnostics (OBD)
    Ackerman steering geometry
    Materia
    Telemática
    Telematics
    Ingeniería de Sistemas
    Systems engineering
    URI
    http://hdl.handle.net/10259/9682
    Versión del editor
    https://doi.org/10.1016/j.eswa.2017.03.018
    Aparece en las colecciones
    • Artículos ARCO
    Attribution-NonCommercial-NoDerivatives 4.0 Internacional
    Documento(s) sujeto(s) a una licencia Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 Internacional
    Ficheros en este ítem
    Nombre:
    Melendez-esa_2017.pdf
    Tamaño:
    1.062Mb
    Formato:
    Adobe PDF
    Thumbnail
    Visualizar/Abrir

    Métricas

    Citas

    Academic Search
    Ver estadísticas de uso

    Exportar

    RISMendeleyRefworksZotero
    • edm
    • marc
    • xoai
    • qdc
    • ore
    • ese
    • dim
    • uketd_dc
    • oai_dc
    • etdms
    • rdf
    • mods
    • mets
    • didl
    • premis
    Mostrar el registro completo del ítem