Universidad de Burgos RIUBU Principal Default Universidad de Burgos RIUBU Principal Default
  • español
  • English
  • français
  • Deutsch
  • português (Brasil)
  • italiano
Universidad de Burgos RIUBU Principal Default
  • Ayuda
  • Contacto
  • Sugerencias
  • Acceso abierto
    • Archivar en RIUBU
    • Acuerdos editoriales para la publicación en acceso abierto
    • Controla tus derechos, facilita el acceso abierto
    • Sobre el acceso abierto y la UBU
    • español
    • English
    • français
    • Deutsch
    • português (Brasil)
    • italiano
    • español
    • English
    • français
    • Deutsch
    • português (Brasil)
    • italiano
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    Listar

    Todo RIUBUComunidadesFechaAutor / DirectorTítuloMateria / AsignaturaEsta colecciónFechaAutor / DirectorTítuloMateria / Asignatura

    Mi cuenta

    AccederRegistro

    Estadísticas

    Ver Estadísticas de uso

    Compartir

    Ver ítem 
    •   RIUBU Principal
    • E-Prints y Datos de investigación
    • Datos de investigación
    • Ver ítem
    •   RIUBU Principal
    • E-Prints y Datos de investigación
    • Datos de investigación
    • Ver ítem

    Por favor, use este identificador para citar o enlazar este ítem: http://hdl.handle.net/10259/9823

    Título
    Dataset of the paper “A multistart tabu search–based method for feature selection in medical applications". Scientific Reports, 13, 17140
    Autor
    Pacheco Bonrostro, JoaquínAutoridad UBU Orcid
    Sáiz Vázquez, OlallaAutoridad UBU Orcid
    Casado Yusta, SilviaAutoridad UBU Orcid
    Ubillos Landa, SilviaAutoridad UBU Orcid
    Editorial
    Universidad de Burgos
    Fecha de publicación
    2023
    DOI
    10.71486/acwh-9v83
    Resumen
    In the design of classification models, irrelevant or noisy features are often generated. In some cases, there may even be negative interactions among features. These weaknesses can degrade the performance of the models. Feature selection is a task that searches for a small subset of relevant features from the original set that generate the most efficient models possible. In addition to improving the efficiency of the models, feature selection confers other advantages, such as greater ease in the generation of the necessary data as well as clearer and more interpretable models. In the case of medical applications, feature selection may help to distinguish which characteristics, habits, and factors have the greatest impact on the onset of diseases. However, feature selection is a complex task due to the large number of possible solutions. In the last few years, methods based on different metaheuristic strategies, mainly evolutionary algorithms, have been proposed. The motivation of this work is to develop a method that outperforms previous methods, with the benefits that this implies especially in the medical field. More precisely, the present study proposes a simple method based on tabu search and multistart techniques. The proposed method was analyzed and compared to other methods by testing their performance on several medical databases. Specifically, eight databases belong to the well-known repository of the University of California in Irvine and one of our own design were used. In these computational tests, the proposed method outperformed other recent methods as gauged by various metrics and classifiers. The analyses were accompanied by statistical tests, the results of which showed that the superiority of our method is significant and therefore strengthened these conclusions. In short, the contribution of this work is the development of a method that, on the one hand, is based on different strategies than those used in recent methods, and on the other hand, improves the performance of these methods.
    Palabras clave
    Classification
    Feature selection
    Medical diagnosis
    Tabu search
    Materia
    Investigación operativa
    Operations research
    Modelos matemáticos
    Mathematical models
    URI
    http://hdl.handle.net/10259/9823
    Referenciado en
    http://hdl.handle.net/10259/8409
    Aparece en las colecciones
    • Datos de investigación SIQoL
    • Datos de investigación GRINUBUMET
    • Datos de investigación
    Atribución-NoComercial 4.0 Internacional
    Documento(s) sujeto(s) a una licencia Creative Commons Atribución-NoComercial 4.0 Internacional
    Ficheros en este ítem
    Nombre:
    readme.docx
    Tamaño:
    14.54Kb
    Formato:
    Microsoft Word XML
    Thumbnail
    Visualizar/Abrir
    Nombre:
    Pacheco-new_database_for_the_paper_a_multi-start_tabu_search-based_method_for_feature_selection_in_medical_applications-2023.zip
    Tamaño:
    18.33Kb
    Formato:
    zip
    Thumbnail
    Visualizar/Abrir

    Métricas

    Citas

    Academic Search
    Ver estadísticas de uso

    Exportar

    RISMendeleyRefworksZotero
    • edm
    • marc
    • xoai
    • qdc
    • ore
    • ese
    • dim
    • uketd_dc
    • oai_dc
    • etdms
    • rdf
    • mods
    • mets
    • didl
    • premis
    Mostrar el registro completo del ítem