Universidad de Burgos RIUBU Principal Default Universidad de Burgos RIUBU Principal Default
  • español
  • English
  • français
  • Deutsch
  • português (Brasil)
  • italiano
Universidad de Burgos RIUBU Principal Default
  • Ayuda
  • Contacto
  • Sugerencias
  • Acceso abierto
    • Archivar en RIUBU
    • Acuerdos editoriales para la publicación en acceso abierto
    • Controla tus derechos, facilita el acceso abierto
    • Sobre el acceso abierto y la UBU
    • español
    • English
    • français
    • Deutsch
    • português (Brasil)
    • italiano
    • español
    • English
    • français
    • Deutsch
    • português (Brasil)
    • italiano
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    Listar

    Todo RIUBUComunidadesFechaAutor / DirectorTítuloMateria / AsignaturaEsta colecciónFechaAutor / DirectorTítuloMateria / Asignatura

    Mi cuenta

    AccederRegistro

    Estadísticas

    Ver Estadísticas de uso

    Compartir

    Ver ítem 
    •   RIUBU Principal
    • E-Prints y Datos de investigación
    • Datos de investigación
    • Ver ítem
    •   RIUBU Principal
    • E-Prints y Datos de investigación
    • Datos de investigación
    • Ver ítem

    Por favor, use este identificador para citar o enlazar este ítem: http://hdl.handle.net/10259/9825

    Título
    Dataset of the paper “Variable selection for linear regression in large databases: exact methods” Applied Intelligence, 51(6), 3736-3756
    Autor
    Pacheco Bonrostro, JoaquínAutoridad UBU Orcid
    Casado Yusta, SilviaAutoridad UBU Orcid
    Editorial
    Universidad de Burgos
    Fecha de publicación
    2020
    DOI
    10.36443/10259/9825
    Resumen
    The variable selection problem in the context of Linear Regression for large databases is analysed. The problem consists in selecting a small subset of independent variables that can perform the prediction task optimally. This problem has a wide range of applications. One important type of application is the design of composite indicators in various areas (sociology and economics, for example). Other important applications of variable selection in linear regression can be found in fields such as chemometrics, genetics, and climate prediction, among many others. For this problem, we propose a Branch & Bound method. This is an exact method and therefore guarantees optimal solutions. We also provide strategies that enable this method to be applied in very large databases (with hundreds of thousands of cases) in a moderate computation time. A series of computational experiments shows that our method performs well compared with well-known methods in the literature and with commercial software.
    Palabras clave
    Variable selection
    Linear regression
    Branch & Bound methods
    Heuristics
    Materia
    Investigación operativa
    Operations research
    Bases de datos
    Databases
    URI
    http://hdl.handle.net/10259/9825
    Referenciado en
    http://hdl.handle.net/10259/8437
    Aparece en las colecciones
    • Datos de investigación GRINUBUMET
    • Datos de investigación
    Atribución-NoComercial 4.0 Internacional
    Documento(s) sujeto(s) a una licencia Creative Commons Atribución-NoComercial 4.0 Internacional
    Ficheros en este ítem
    Nombre:
    readme.docx
    Tamaño:
    14.17Kb
    Formato:
    Microsoft Word XML
    Thumbnail
    Visualizar/Abrir
    Nombre:
    Pacheco-matrices_for_paper_variables_selection_in_linear_regression_size_n_18-42-2020.zip
    Tamaño:
    84.98Mb
    Formato:
    zip
    Thumbnail
    Visualizar/Abrir
    Nombre:
    Pacheco-matrices_for_paper_variables_selection_in_linear_regression_size_n_45_-_60-2020.zip
    Tamaño:
    97.10Mb
    Formato:
    zip
    Thumbnail
    Visualizar/Abrir
    Nombre:
    Pacheco-matrices_for_paper_variables_selection_in_linear_regression_size_n_63_-_72-2020.zip
    Tamaño:
    82.64Mb
    Formato:
    zip
    Thumbnail
    Visualizar/Abrir

    Métricas

    Citas

    Academic Search
    Ver estadísticas de uso

    Exportar

    RISMendeleyRefworksZotero
    • edm
    • marc
    • xoai
    • qdc
    • ore
    • ese
    • dim
    • uketd_dc
    • oai_dc
    • etdms
    • rdf
    • mods
    • mets
    • didl
    • premis
    Mostrar el registro completo del ítem