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Abstract 9 

Fish and fish by-products are the main natural source of omega-3 polyunsaturated fatty 10 

acids, especially EPA (eicosapentaenoic acid) and DHA (docosahexaenoic acid), both 11 

of them with a great importance in the food and pharmaceutical industries. Comparing 12 

to conventional fish oil extraction processes such as cold extraction, wet reduction or 13 

enzymatic extraction, supercritical fluid extraction with carbon dioxide under moderate 14 

conditions (25 MPa and 313 K) may be useful for reducing fish oil oxidation, especially 15 

when fish oil is rich in omega-3 such as salmon oil, and the amount of certain 16 

impurities, such as some species of arsenic. Furthermore, taking profit of the advantages 17 

of supercritical carbon dioxide as extractive solvent, a coupled extraction - fractionation 18 

process is proposed as a way to remove free fatty acids and improve fish oil quality, 19 

alternatively to physical and chemical refining procedures.  20 
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1. Introduction 24 

The fish industry is a wide sector that includes several production processes such as 25 

filleting, curing, salting, smoking, canning, etc. Nowadays, it is estimated that more 26 

than 70 % of the total fish captures are processed, generating a large amount of solid 27 

wastes and by-products, which often represent more than 50 % of the total fish weight 28 

(Shahidi, 2007) (see Figure 1). On the other hand, production of high quality fish oil has 29 

acquired a great importance since it is considered one of the main natural sources of 30 

omega-3 PolyUnsaturated Fatty Acids (PUFA), which benefits in human health have 31 

been extensively reported in the literature (Chow, 2000). Production of omega-3 rich 32 

fish oils has become a good opportunity for valorising fish by-products and increasing 33 

the competitiveness of the fish industry. In the last years, by-products from different 34 

types of fishes, such as tuna (Chantachum et al., 2000), herring (Aidos et al., 2002), 35 

salmon (Wu & Bechtel, 2008), or walleye pollock (Wu & Bechtel, 2009), have been 36 

proposed as raw materials for fish oil production. However, the production of high 37 

quality fish oil as source of omega-3 involves, not only searching for an omega-3 rich 38 

raw material, but also developing a suitable extraction procedure.  39 

The most common method used for fish oil production is wet reduction, which involves 40 

three basic steps: cooking at high temperatures (85 – 95 °C), pressing and centrifuging 41 

(FAO, 1986). This process permits obtaining high volumes of crude fish oil, although 42 

subsequent refining steps are required in order to make the crude fish oil suitable for 43 

edible purposes. Other processes, such as enzymatic reaction with proteases, have been 44 

studied for obtaining crude oil from fish by-products (Linder et al., 2005). In the last 45 

years, supercritical fluid extraction (SFE) has become an attractive technology for 46 

obtaining high quality fish oil from some by-products (Letisse et al., 2006, Rubio-47 

Rodríguez et al., 2008), not only because it uses moderate temperatures and provides an 48 

oxygen free media, which aim to reduce the omega-3 oxidation during the extraction 49 

process, but also because it allows extracting selectively low polar lipid compounds, 50 

avoiding the co-extraction of polar impurities such as some inorganic derivatives with 51 

heavy metals. Furthermore, the tunability of the supercritical carbon dioxide (SC-CO2) 52 

regarding density, and therefore solvation power, by changing temperature and/or 53 

pressure, makes fish oil de-acidification possible, alternatively to conventional physical 54 
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and chemical fish oil refining (Catchpole et al., 2000, Jakobsson et al., 1991, Jakobsson 55 

et al., 1994, Kawashima et al., 2006, Yuqian & Huashi, 2001). 56 

The main limitation of the SFE process is the high cost at production scale, not only due 57 

to the use of high pressure equipment, but also because the raw material should be 58 

freeze-dried in order to reduce its moisture to values below 20 % and keep unaltered the 59 

omega-3 PUFA and the fish structure (Rubio-Rodríguez et al., 2008). Taking this into 60 

account, a study of the quality of the oil obtained by SFE and non-SFE methods would 61 

illustrate on the competitiveness of SFE from a commercial point of view.  62 

The aim of this work is to compare different extraction processes (i.e.: cold extraction, 63 

wet reduction, enzymatic extraction and supercritical fluid extraction) to obtain oil from 64 

different fish by-products, at a laboratory scale, taking into account, not only the 65 

extraction yield, but also the oil quality. 66 

2. Material and methods 67 

2.1. Raw material and pretreatment 68 

The raw materials studied were four different fish by-products supplied by Pescanova, a 69 

Spanish fish company located in Pontevedra (Spain), specifically, offcuts from hake 70 

(Merluccius capensis – Merluccius paradoxus) (H), orange roughy (Hoplostethus 71 

atlanticus) (OR) and salmon (Salmo salar) (S), and livers from jumbo squid (Dosidicus 72 

gigas) (JS). The offcuts consisted mainly of skin with some stuck muscle, obtained by 73 

peeling fishes with a TRIO™ peeler in open seas, whereas the livers were obtained 74 

during the evisceration process. For each species, the by-products used as raw material 75 

came from a unique batch (related to a certain place, season of fish capture and 76 

processing batch), which was delivered frozen at 253 K. In order to minimize the 77 

variability due to the different fish individuals and to improve the extraction rate, each 78 

batch received in the laboratory was cut in small pieces (1-10 mm equivalent diameter) 79 

with a cutter, packed in individual plastic bags under vacuum and kept frozen until the 80 

experiments were performed. 81 
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2.2. Oil extraction methods 82 

Oil from each fish by-product was obtained in parallel by four different methods: Cold 83 

Extraction (CE) or centrifuging, Wet Reduction (WR), Enzymatic Extraction (EE) and 84 

Supercritical Fluid Extraction (SFE). The amount of raw material used in each 85 

extraction method was approximately 100 g. The experimental conditions used in each 86 

case are reported in Figure 2.  87 

In cold extraction, wet reduction and enzymatic extraction, fish offcuts were previously 88 

thawed at room temperature during 12 hours, and the water co-extracted together with 89 

the oil was removed by centrifuging (Centrikon T-124, Kontron Instruments). 90 

Enzymatic extraction was carried out following the method proposed by Gbogouri et al. 91 

(2006). The enzyme used was a food-grade protease, Alcalase 2.4 L (bacterial protease 92 

from Bacillus licheniformis), provided by Novozyme (Bagsvaerd, Denmark). The 93 

enzyme / substrate ratio was 0.05 w / w protein. 94 

SFE was carried out in a semi-pilot plant under the optimal extraction conditions 95 

(p = 25 MPa, T = 313 K) found in a previous study (Rubio-Rodríguez et al., 2008). The 96 

raw material used for this extraction method was previously freeze-dried (FreeZone 97 

12 L Console Freeze Dry System with drying chamber, Labconco). Some of the SFE 98 

experiments included fractionation of the extract by depressurization in two consecutive 99 

separators: the first separator (S1), which was kept at a pressure of 9 ± 0.5 MPa and a 100 

temperature of 308 ± 1 K, and the second separator (S2), which was kept at a pressure 101 

of 5 ± 0.5 MPa and a temperature 283 ± 1 K. Thus, the SC-CO2 density in S1 was in the 102 

range 650 ± 50 kg / m3, well below its density in the extractor (880 ± 5 kg / m3) and 103 

above that in S2 (below critical density, ρc = 468 kg / m3). This way, most of the 104 

triglycerides were recovered in S1 and most of the free fatty acids were recovered in S2. 105 

In all cases, the oil fractions were stored in closed vessels in darkness at -18 °C in order 106 

to minimize spoiling before characterization. 107 
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2.3. Analytical methods 108 

2.3.1. Characterization of fish by-products 109 

Fish by-products were characterized by determining their water, protein and fat content 110 

in order to establish their profitability as raw materials for oil extraction (see Table 1). 111 

Water and protein content were determined by the AOAC Official Methods 934.01 and 112 

981.10 respectively (2000). Total fat content was determined by Soxhlet extraction 113 

using petroleum ether as solvent in a Büchi extraction system (model B-811). Soxhlet 114 

extraction was performed over freeze-dried samples in 140 minutes distributed in three 115 

stages: extraction (120 min), rinsing (10 min) and drying (10 min). 116 

The amount of trace metals (Fe, Cu, Zn, As, Cd, Hg and Pb) was also determined. A 117 

wet digestion was firstly carried out over the samples in order to destroy the organic 118 

matter. A sample of about 20 mg was treated with 10 mL of HNO3 65 % suprapur® 119 

(Merck, Germany) in a microwave oven (Ethos Sel, Milestone) provided with ten 120 

Teflon vessels (HPR-1000/10 S). The temperature program selected involved three 121 

heating steps (from room temperature to 80 °C in 4 min, from 80 °C to 130 °C in 7 min 122 

and from 130 °C to 170 °C in 5 min) followed by a constant heating at 170 °C for 123 

10 min and a final ventilation step. After digestion, the samples were diluted to 25 mL 124 

with Milli-Q water, and analysed by ICP-MS (Agilent 7500 i). 125 

2.3.2. Oil characterization  126 

The quality of the oil obtained by the different extraction methods was evaluated by 127 

determining several parameters, i.e.: moisture and volatile matter content, neutral lipid 128 

composition, fatty acid profile, acidity value, peroxide value, anisidine value, volatile 129 

compounds profile and trace metals.  130 

Moisture and volatile matter content was determined according to the IUPAC Standard 131 

Method (1964) by weight loss after heating in an oven at 105 °C during 30 min. 132 

The total amount of neutral lipids was determined by liquid chromatography in a HPLC 133 

system (Agilent 1200) formed by a quaternary pump and an auto-injector. The 134 

separations were carried out at room temperature in a column (Lichrospher Diol 135 
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5 mm, 4 × 250 mm) and the detection was performed in an evaporative light scattering 136 

detector (Agilent 1200 series) at 45 °C and 3.5 bar. The mobile phase consisted of a 137 

mixture of solvents: (A) hexane/acetic acid (99.5/0.5 by volume) and (B) hexane/1-138 

propanol/acetic acid/water (85/14.4/0.5/0.1 by volume). The solvent gradient used was 139 

as follow: first, solvent A was flowing for 1 min, after that, solvent B was added in three 140 

steps, up to 10 % in 9 min, to 44 % in 12 min and to 100 % in 8 min. Finally, the 141 

stationary phase was rinsed with solvent A during 5 min. Total solvent flow rate was 142 

kept constant at 1 mL / min all along the analysis. Calibration was carried out using 143 

standards of palmitil palmitate (99 %), tripalmitin (> 99 %), dipalmitin (99 %), 144 

monopalmitin (99 %) and palmitic acid (99 %) in hexane. The calibration curves 145 

showed a good correlation according to the exponential relationship described for an 146 

evaporative light scattering detector. 147 

The fatty acids profile was determined following the AOAC method (1995) as 148 

previously described by Rubio-Rodríguez et al. (2008). 149 

The acidity value and the peroxide value (PV), were determined according to the AOCS 150 

Official Methods Ca 5a-40 and Cd 8-53 respectively (1990), whereas the anisidine 151 

value (AV) was evaluated according to the British Standard method BS 684-2.24 152 

(2008). The TOTal OXidation value (TOTOX) was determined according to the 153 

expression (2 PV + AV) (Perrin, 1996). 154 

Volatile compounds were analyzed by GC-MS after Solid Phase Dynamic Extraction 155 

(SPDE) sampling. The SPDE device (Chromtech, Idstein, Germany) was equipped with 156 

a needle coated with a non-polar 50 μm film of polydimethylsiloxane with 10 % 157 

embedded activated carbon phase (PDMS/AC). Samples were incubated for 1 min at 158 

70 °C; and after equilibration, extraction was performed (50 aspiration cycles, 159 

extraction speed 40 μL/s). Gas chromatography analyses were carried out with a 6890N 160 

Series GC System coupled to a 5973i mass spectrometer (Agilent Technologies, Palo 161 

Alto. CA.USA). The SPDE needle was injected and thermally desorbed at 250 °C. 162 

Compounds were separated on a HP5 capillary column (50 m length x 0.32 mm I.D, 163 

fused silica capillary column coated with a 1.05 μm film thickness. Quadrex 164 

Corporation. New Haven. USA). The temperature of the column was increased at a rate 165 

of 3 °C / min from 40 to 240 °C.  166 
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The amount of trace metals (Fe, Cu, Zn, As, Cd, Hg and Pb) in fish oil was determined 167 

following the same procedure described above for fish by-products. 168 

2.3.3. Oil sensory analysis 169 

An off-odour comparison among the oils extracted by different methods was carried out 170 

both by electronic nose and by sensory analysis. The overall smell print was determined 171 

by an electronic nose αFOX 4000 (AlfaMOS, Toulouse, France) with a sensor array of 172 

18 metal oxide sensors. Vials with the samples were incubated 5 minutes under stirring 173 

(500 rpm, cycles 5 s on and 2 s off) in an oven at 50 °C for generating the equilibrated 174 

headspace. The injection temperature was 60 °C; the carrier gas was synthetic air with a 175 

flow of 150 mL/min. Sensory characterization of oil was carried out by 10 panellists 176 

trained in descriptive analysis of fish off-flavours. A total of six sensory descriptors 177 

were used (fishy, rancid, boiled, acid, sweet and other off-flavours), which were 178 

measured on a structured intensity scale with a range from a minimum of zero to a 179 

maximum of five. Samples (0.5 g of oil) were presented randomized at room 180 

temperature in blind vials numbered with a code of three digits.  181 

3. Results and discussion 182 

3.1. General features on the extraction procedures used in this work 183 

Extraction with SC-CO2 has been proposed as a good method for obtaining fish oil with 184 

a high amount of omega-3 fatty acids, since it involves the use of a non-oxidant 185 

atmosphere and mild temperatures, which prevent the oxidation of the polyunsaturated 186 

fatty acids. Previous studies (Rubio-Rodríguez et al., 2008) have concluded that it is 187 

possible to totally extract the oil contained in hake offcuts by using SC-CO2 at a 188 

pressure of 25 MPa and a temperature of 313 K. The highest yield and extraction rate 189 

were reached when the by-products were previously cut and freeze-dried to a moisture 190 

content below 20 % in order to improve the oil - SC-CO2 contact and minimize oil –191 

 water interaction in the supercritical phase. The extraction curves obtained were well 192 

fitted to the empirical model proposed by Kandiah and Spiro (1990), which assumes 193 

that the process is controlled by two diffusion stages depending on the amount of oil 194 

accessible to the SC-CO2. At the beginning, the amount of the most accessible oil is 195 

high, thus the internal mass transfer resistance is low and the extraction rate is large. 196 



9 

 

However, after the most accessible oil has been extracted, the remaining oil, less 197 

accessible to the solvent, is removed more slowly due to the higher internal mass 198 

transfer resistance (Rubio-Rodríguez et al., 2008). 199 

SFE from other freeze-dried fish by-products i.e.: orange roughy offcuts, salmon offcuts 200 

and jumbo squid liver, has been also shown to be feasible under the same experimental 201 

conditions. Figure 3 shows the extraction curves where the amount of oil extracted 202 

along time can be observed for each species. In all cases, it was observed that, at the 203 

beginning of the process, the oil extracted depended linearly on the amount of SC-CO2 204 

that flows through the extractor, which may indicate either that the internal mass 205 

transfer is negligible and the process is controlled by the oil solubility in SC-CO2 or that 206 

the internal mass transfer is constant and the extraction rate depends on the internal 207 

structure of the solid matrix. The values of the slopes of the extraction curves estimated 208 

at zero time are reported in Table 2. It is observed that these slopes differ significantly 209 

among the fish by-products studied, which may be attributed not only to the different 210 

internal structure, which affects the internal mass resistance in the extraction process, 211 

but also to the different solubility of the fish oil in SC-CO2 due to the different neutral 212 

lipid composition and fatty acid profile, as can be seen in Tables 3 and 4 respectively. 213 

The internal mass transfer resistance can be considered negligible for fish by-products 214 

with mostly extracellular oil as is the case of orange roughy oil (Phleger, 1998), or oil 215 

weakly bound to the protein matrix, as observed for salmon oil; therefore, the initial 216 

slope of their SFE curves in Figure 3 can be assumed to be close to the oil solubility in 217 

SC-CO2, which, moreover, depends on the oil composition. Thus, for a fish oil rich in 218 

triacylglycerides (i.e.: salmon oil, see Table 3) this slope would be lower than for fish 219 

oil rich in wax esters (i.e.: orange roughy oil, see Table 3), which solubility in SC-CO2 220 

is usually higher than that of triacylglycerides (Gupta & Shim, 2007). 221 

In the case of fish by-products, in which the oil is strongly bounded to the protein 222 

matrix (intracellular oil), the internal mass transfer resistance is important, reason for 223 

which, the slopes of the extraction curves are lower than the oil solubility values. This 224 

hypothesis may explain why in the case of hake offcuts or jumbo squid livers, both with 225 

an oil rich in triacylglycerides, the values of the initial slopes of the extraction curves 226 

(see Table 2) were not as high as the value obtained for salmon oil. 227 
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When using other methods, different than SFE (non-SFE methods), to obtain fish oil, 228 

the by-products were used just after being defrost, without freeze-drying.  229 

Cold extraction was the easiest way for obtaining fish oil since it only involves a 230 

mechanical phase separation (solid, water and oil) by centrifuging. However, by using 231 

this procedure, in our laboratory, only oil from orange roughy and salmon offcuts could 232 

be obtained. This could be expected, since the oil of those fish by-products is the most 233 

weakly bound to the protein matrix, out of the four species considered in this work. 234 

Other non-SFE methods, such as wet reduction, in which the protein matrix is 235 

previously denaturised by the action of heat in the cooking step, or enzymatic 236 

extraction, in which the protein matrix is hydrolysed by the action of the protease in the 237 

enzymatic reaction step, are expected to provide higher yields than cold extraction. The 238 

experiments performed in our laboratory showed that these two methods were suitable 239 

for obtaining oil from fatty fish by-products such as orange roughy or salmon offcuts, 240 

but not from lean fish by-products such as hake offcuts or jumbo squid liver. In these 241 

last cases, most of the oil appeared emulsified in either a cream or a skim fraction, 242 

stable even after a centrifugation step, probably due to the emulsifying effect of some 243 

fish proteins. A similar effect was observed after the aqueous extraction of oils from 244 

seeds, such as soybean, coconut or peanut (Rosenthal et al., 1996). In this case, the 245 

authors proposed a demulsification step (freezing and thawing, clear oil addition, high 246 

shear stress…) to break down the stable oil-in-water emulsion. Thus, among the by-247 

products explored in this work, only those from fatty species, with a high amount of oil 248 

weakly bound to the solid matrix (orange roughy and salmon offcuts), were suitable for 249 

obtaining fish oil by any of the four methods proposed. 250 

Figure 4 shows an estimation of the mass balance that results when obtaining oil from 251 

salmon offcuts by the four different extraction methods carried out in our laboratory. 252 

This estimation was observed to be also valid for oil extraction from orange roughy 253 

offcuts. It can be observed that SFE coupled with freeze-drying generates oil and a dry 254 

solid phase, rich in proteins (fish meal), whereas when using cold extraction or wet 255 

reduction, a high amount of oil still remains in the wet solid (press cake) obtained after 256 

centrifuging. This solid would require a subsequent treatment in order to obtain a dry 257 

and defatted fish meal. When using the enzymatic method, almost the total amount of 258 



11 

 

oil can be separated from the aqueous phase containing the protein hydrolysed by the 259 

action of the protease. The aqueous phase may be subjected to a subsequent drying step 260 

in order to obtain a dry fish protein hydrolysate.  261 

3.2. Oil quality parameters 262 

A comparison of the quality parameters of the oils obtained from orange roughy and 263 

salmon offcuts, by the four different methods considered in this work, was carried out. 264 

In the case of hake offcuts and jumbo squid livers, the only successful method for 265 

obtaining oil was SFE, the rest of the methods did not provide enough oil for the 266 

comparison to be made. 267 

Some oil properties, such as colour, neutral lipid composition and fatty acid profile, 268 

were observed to be similar, regardless the extraction method used. Thus, the 269 

advantages and disadvantages of the different methods have been established by 270 

comparing other properties such as oil acidity, total oxidation value (TOTOX), volatile 271 

compounds, sensory properties and heavy metal content for orange roughy and salmon 272 

oils. 273 

3.2.1. Oil acidity 274 

Oil acidity is an important quality parameter related to the presence of Free Fatty Acids 275 

(FFA) and other non-lipid acid compounds. FFA are mainly generated by a hydrolysis 276 

reaction of triacylglycerides, whereas non-lipid acid compounds, such as acetic acid, 277 

may be generated during spoilage of the raw material. Thus, oil acidity depends on 278 

several factors related to oil composition, the extraction procedure and the raw material 279 

freshness.  280 

Figure 5 shows the acidity values found for the oils obtained from orange roughy and 281 

salmon offcuts by the four methods used in our laboratory. Focusing on oil composition 282 

(see Tables 3 and 4), we observed that, on the average, oil obtained from salmon 283 

offcuts, with a high amount of triacylglycerides and PUFA, presented a higher acidity 284 

than oil obtained from orange roughy, which was mainly composed by wax esters and a 285 

low amount of PUFA. Focusing on the oil extraction method, it can be observed that, 286 

when salmon offcuts were used as raw material, the oil obtained by SFE presents lower 287 
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acidity than the oils obtained by non-SFE procedures, which may indicate that, in this 288 

case, the hydrolysis of triacylglycerides, and therefore the release of FFA, was less 289 

extended. However, in the case of orange roughy offcuts, it was observed that, in spite 290 

of having a negligible FFA content, as detected by the neutral lipid analysis (see Table 291 

3), the oil obtained by SFE shows a higher acidity value than the oils obtained by non-292 

SFE methods. These experimental results may be explained taking into account that 293 

some acidic compounds, such as acetic acid, were co-extracted together with the oil 294 

when SC-CO2 was used as solvent in a closed system, while they were not obtained by 295 

the non-SFE methods carried out in open vessels (see section 3.2.3).  296 

3.2.2. Total oxidation value (TOTOX) 297 

The total oxidation value is a quality parameter related to the presence of different 298 

compounds such as hydroperoxides, aldehydes, ketones.., which are mainly generated 299 

by PUFA degradation under pro-oxidant conditions, especially high temperatures, 300 

oxygen, metal compounds and light. The TOTOX value is therefore intrinsically related 301 

to the PUFA amount in the oil and to the extraction procedure. Figure 6 shows that, 302 

regardless the extraction method, salmon oil, with a higher PUFA content than orange 303 

roughy oil, presents also a higher TOTOX value. On the other hand, the SFE method, 304 

which was carried out under lower oxidising conditions (mild temperatures, non-oxidant 305 

atmosphere, darkness) than the non-SFE procedures, made possible to reduce 306 

significantly the TOTOX value in both salmon and orange roughy oil.  307 

3.2.3. Volatile compounds and sensory properties 308 

Sensory properties related to odour and flavour in fish oil, are strongly dependent on the 309 

presence of volatile compounds such as organic acids, amines or aldehydes, which are 310 

mostly responsible for the main fishy off-flavours. Some of these volatile compounds, 311 

such as hexanal or nonanal, are mostly generated as a consequence of a lipid 312 

auto-oxidation process, and, therefore, their presence in fish oil is intrinsically affected 313 

by the extraction parameters, especially temperature, oxygen in the media, light or metal 314 

content. On the contrary, other volatile compounds are produced during fish storage or 315 

spoilage by bacterial and / or enzymatic action over protein, aminoacids and 316 
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carbohydrates, and thus, their presence in the oil may be attributed to the raw material 317 

freshness (see Table 5). That is the case of trimethylamine which is mainly produced by 318 

the action of specific spoilage bacteria, such as Shewanella putrefaciens, of 319 

dimethylamine, mainly produced by endogenous enzymes during fish storage, or of the 320 

acetic acid which can be produced by anaerobic degradation of aminoacids (Huss, 321 

1995). 322 

As can be observed in Table 6, where the volatile compounds found in the oil obtained 323 

from orange roughy offcuts by the four different methods essayed in this work are 324 

presented, hexanal and nonanal, mainly generated by lipid oxidation, were only detected 325 

in the oil obtained by non-SFE methods, which explain the highest level of rancid odour 326 

detected by sensory analysis of these oils, especially in that obtained by enzymatic 327 

extraction (see Figure 7). These results show that, due to the use of mild temperatures 328 

and a non-oxidizing atmosphere, SFE made possible to reduce the lipid oxidation more 329 

than the non-SFE processes. On the contrary, dimethylamine, responsible for the highest 330 

level of fishy odour detected in this oil by sensory analysis (see Figure 7), and acetic 331 

acid, responsible for the unexpected high acidity value (see section 3.2.1.), were only 332 

detected in the oil obtained by SFE (see Table 6). These experimental results could be 333 

explained taking into account that these volatile compounds, soaked in the raw material, 334 

can be easily extracted by SC-CO2 due to their high vapour pressure, and, since the 335 

process takes place in a solvent recirculation system, they may partially remain 336 

absorbed by the oil. In any case, the amount of these volatile compounds may be 337 

significantly reduced by coupling SFE with other separation process such as 338 

countercurrent fractionation or adsorption, as has been previously reported in the 339 

literature (Rubio-Rodríguez et al., 2010). 340 

The different volatile compounds profile found in the oil obtained from orange roughy 341 

offcuts by SFE, compared with that profile for the oils obtained by the non-SFE 342 

methods, is also observed in the results obtained from the electronic nose analysis, as 343 

illustrated by the Principal Component Analysis (PCA) of the data shown in Figure 8, as 344 

well as was found by the trained panel (Figure 7).  345 
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These results show that the freshness of the raw material is crucial for obtaining good 346 

quality sensory properties in the oil, especially if oil production is carried out in a closed 347 

system and with SC-CO2 as solvent.  348 

3.2.4. Toxic heavy metals 349 

Heavy metals, such as As, Cd, Hg and Pb, are toxic compounds that, in some cases, may 350 

be accumulated in some fish parts, such as fish offcuts or livers, due to water pollution 351 

(see Table 7). In this work, focus has been brought into As since it was detected at a 352 

level higher than 1 mg / kg in oil fraction in all the by-products explored in this work. 353 

Due to the high selectivity of SC-CO2 for non-polar compounds, the amount of heavy 354 

metals extracted together with the oil by SFE was negligible, as was the case of Cd, Hg 355 

and Pb, or significantly reduced, as in the case of As (see Table 7). 356 

Total As content includes inorganic and organic derivatives, which are present in sea 357 

water due to natural processes (Smedley & Kinniburg, 2002) and pollution. These As 358 

derivatives may bio-accumulate in marine organisms, being the water soluble form, 359 

arsenobetaine, the main species found in fish (Ackley et al., 1999). However, recent 360 

studies have also found considerable amounts (4.3 – 10.5 ppm) of non polar lipid bound 361 

As compounds or arsenolipids in ten different crude fish oils (Schemeisser et al., 2005). 362 

Figure 9 shows the As concentration found in orange roughy and salmon oils obtained 363 

by the four different methods proposed in this work. It can be observed that, in the case 364 

of orange roughy oil, SFE made possible to reduce significantly the amount of As, 365 

whereas in the case of salmon oil, this reduction was not significant compared with the 366 

oil extracted by the non-SFE methods. These results suggest that the success of SFE for 367 

reducing the amount of As in oil is strongly dependent on the type of As species present 368 

in the raw material. Reduction down to the recommended values could be achieved by 369 

countercurrent SFE. 370 

3.3. Enhancement of oil quality through SFE-fractionation 371 

SFE followed by fractionation in two separators was studied as a way to refine fish oil 372 

and reduce the amount of impurities, especially free fatty acids, which, in general, are 373 

more soluble in SC-CO2 than the relative triacylglycerides.  374 
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Fractionation was only applied to the species that provided the best oil regarding 375 

triacylglycerides and omega-3 fatty acids content, that is, hake and salmon offcuts and 376 

jumbo squid liver SFE. 377 

Table 8 shows the average amount of oil recovered in each separator for different 378 

experiments together with the calculated mass percentage. It can be observed that, in all 379 

cases, a higher amount of oil is recovered in S1, although this amount varies from 63 % 380 

in hake oil to 86 % and 83 % in salmon and jumbo squid liver oil respectively, which 381 

may be attributed to the different fish oil composition, as it is reported in Tables 3 and 382 

4, and to the experimental CO2 density fluctuations in Separator 1 (S1). 383 

The mass percentage distribution of triacylglycerides (TAG) and FFA between the two 384 

separators is also presented in Figure 10. It can be observed that, in all cases, most of 385 

TAG are collected in S1, which can be explained by considering their higher molecular 386 

weight and lower vapour pressure, and therefore their lower solubility regarding FFA. 387 

However, the distribution of fatty acids varies significantly among different fish oils, 388 

which may be attributed to the different fatty acid profile (see Table 4). Thus, in the 389 

case of hake oil and salmon oil, in which palmitic and oleic are the main fatty acids, the 390 

majority of FFA reach Separator 2 (S2), whereas in the case of jumbo squid oil, in 391 

which palmitic acid and EPA are the most common fatty acids, a large among of FFA 392 

remain in S1. These experimental results indicate again that fractionation is highly 393 

affected by fish oil composition.  394 

Finally, it is observed that, in all cases, the mass ratio FFA / TAG increases noticeably 395 

in the fraction recovered in S2, and decreases in the fraction recovered in S1 (see Figure 396 

11), although in the case of jumbo squid liver oil, this fraction still remains fairly high 397 

in S1.  398 

A comparison of the fatty acid profile of the different oil fractions and the oil without 399 

fractionation is presented in Figure 12. It can be observed that, in general, the 400 

concentration of fatty acids is higher in the fraction recovered in S1, which is related to 401 

the fact that most neutral lipids remain in that fraction. The long chain (LCFA) to short 402 

chain fatty acids (SCFA) ratio and the saturated (SFA) to unsaturated (MUFA and 403 
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PUFA) fatty acids ratio do not show a significant variation between the two lipid 404 

fractions (see Figure 13). 405 

Finally, as can be observed in Figure 14, fractionation in two separators may offer the 406 

possibility of obtaining a fraction in the first separator with a lower acidity value and 407 

total oxidation value (TOTOX) than in the fish oil without fractionating. In any case, a 408 

countercurrent oil fractionation would be much more effective that the simple 409 

fractionation after extraction carried out in this work, as it has been observed in 410 

previous studies (Rubio-Rodríguez et al., 2010). 411 

3.4. Economical considerations 412 

During the last decades, different supercritical fluid technologies have been established 413 

as interesting for safely processing natural products in the food and pharmaceutical 414 

industries. Nowadays, several processes such as coffee decaffeination, hops extraction, 415 

essential oils extraction, cork cleaning, pesticides removal from rice, etc., are carried out 416 

at commercial scale in different parts of Europe, US and Asia (Brunner, 2010, Perrut, 417 

2000). Some studies have shown that, in spite of requiring a high investment cost, 418 

supercritical fluid extraction of essential oils requires lower processing costs and 419 

downstream processing making this process competitive regarding steam distillation 420 

(Pereira & Meireles, 2007). Concerning the processing of fats and oils, SFE may also 421 

compete with traditional processes in the case of specialty oils such as nut oils (almond, 422 

peanut...), seed oils (apricot, borage, grape, sesame...), cereal oils (wheat germs, rice 423 

bran...) or fruit oils (cloudberry, tomato...), which contain bioactive lipid compounds 424 

interesting in the food and pharmaceutical industries (Temelli, 2009). In the case of fish 425 

oil extraction, although SFE leads to high quality oil, the drying step, required before 426 

extraction, increases noticeable the production cost and minimizes competitiveness 427 

against alternative extraction processes. Thus, the industrial application of supercritical 428 

fluid technology in omega-3 processing should be focused not only on an isolated SFE 429 

procedure but on a whole process involving the use of SC-CO2 in fish oil extraction, 430 

fractionation, omega-3 concentration and / or formulation (Rubio-Rodríguez et al., 431 

2010) in order to obtain small volumes of high value omega-3 concentrates used as 432 

ingredients in functional foods or as active principles in pharmacology. 433 
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4. Conclusions 434 

The valorisation of fish by-products by recovering their oil has a great interest in the 435 

fish industry, especially when the oil is rich in triglycerides and has a high content of 436 

omega-3 polyunsaturated fatty acids. The extraction process used to obtain omega-3 437 

rich oils has been also shown to be important to obtain the best oil quality regarding 438 

lipid oxidation, pollutants content and sensory properties. In addition, the extraction 439 

method may not only affect the oil extraction yield and quality, but also the quality of 440 

the fish protein or fish meal obtained, which has also a great interest as add value 441 

ingredient. 442 

A comparison of the oils obtained by SFE over freeze-dried fish by-products and by 443 

other methods carried out in the laboratory (cold extraction, wet reduction and 444 

enzymatic extraction), shows that SFE may be a useful method to prevent lipid 445 

oxidation, especially in fish oils rich in omega-3 such as salmon oil, and, to reduce 446 

significantly the amount of certain pollutants such as some arsenic species (mainly polar 447 

derivatives). Nonetheless, it has been observed that SFE may involve the co-extraction 448 

of some endogenous volatile compounds soaked in the raw material, such as amines or 449 

short chain organic acids, when performed in a closed system, which reduce oil quality 450 

by increasing the fishy odour and the acidity. That suggests that the success of a SFE 451 

method is highly dependent on the quality and freshness of the raw material and, in 452 

some cases, coupling a subsequently deodorization step would be required. On the other 453 

hand, SFE over freeze dried fish made possible to extract oil from by-products with a 454 

low fat content such as hake offcuts or jumbo squid liver, avoiding production of water 455 

wastes rich in proteins or fat, which have an important interest both from an economical 456 

and an environmental point of view. Therefore, in spite of involving higher inversion 457 

costs, SFE presents some advantages over other extraction processes such as cold 458 

extraction, wet reduction or enzymatic extraction. Furthermore, fractionation of the 459 

extract in two separators after SFE is an easy way to enhance fish oil quality by 460 

reducing the amount of free fatty acids as well as some oxidation products. 461 
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Table 1. Composition of the different by-products studied (H: Hake offcuts, S: Salmon 545 

offcuts, OR: Orange Roughy offcuts, JS: Jumbo Squid livers) as potential sources of 546 

marine oil. 547 

Marine by-products Water (%) Fat (%) Protein (%) Oil / water ratio 

H 79 ± 1 4.0 ± 0.1 16 ± 1 0.1 

OR 55 ± 2 32 ± 1 13 ± 1 0.6 

S 57 ± 3 27 ± 5 17 ± 4 0.5 

JS 70 ± 1 8 ± 3 22 ± 4 0.12 

548 



22 

 

Table 2. Initial slope, wp, of the fish oil extraction curves presented in Figure 3. 549 

 H OR S JS 

wp (g oil / kg CO2) 3.0 10.0 5.2 3.0 

550 
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Table 3. Neutral lipids profile in marine oils obtained by SFE from different fish by-551 

products: H: Hake offcuts, S: Salmon offcuts, OR: Orange Roughy offcuts, JS: Jumbo 552 

Squid livers 553 

Neutral lipids 
% wt. in oil 

H OR S JS 

Wax esters (WE) n.d. > 99 n.d. 0.6 

Triacylglycerides (TAG) 67 n.d. 97.1 30.4 

Free Fatty Acids (FFA) 3.8 n.d. 1.3 7.1 

Cholesterol (CHOL) 1.8 n.d. 0.7 4.9 

Concentration expressed using palmityl palmitate, tripalmitine and palmitic acid as standards for obtaining 

the calibration curves of wax esters, triacylglycerides and fatty acids respectively. n.d. not detected. 

554 
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Table 4. Fatty acid profile in marine oils obtained by SFE from different marine by-555 

products: H: Hake offcuts, S: Salmon offcuts, OR: Orange Roughy offcuts, JS: Jumbo 556 

Squid livers. 557 

Fatty acids 
mg of fatty acids / g fish oil 

H OR S JS 

C14:0 (myristic acid) 19 ± 2 4.0 ± 0.3 40.4 ± 0.1 39 ± 3 

C16:0 (palmitic acid) 129 ± 12 6.4 ± 0.4 143 ± 0.4 141 ± 12 

C16:1 (palmitoleic acid) 34 ± 6 44 ± 3 59 ± 1 43 ± 4 

C18:0 (stearic acid) 21 ± 2 2.5 ± 0.2 46.4 ± 0.1 43 ± 4 

C18:1n-9 (oleic acid) 142 ± 13 213 ± 13 146 ± 2 42 ± 4 

C18:1n-7 (vacenic acid) 22 ± 2 24 ± 2 28.9 ± 0.1 23 ± 2 

C18:2n-6 (LA) 7.0 ± 0.7 4.7 ± 0.3 93 ± 1 5.8 ± 0.5 

C18:3n-6 (GLA) 1.9 ± 0.2 1.4 ± 0.1 5.5 ± 0.1 3.1 ± 0.2 

C18:3n-3 (ALA) 2.6 ± 0.3 n.d. 14.0 ± 0.2 2.9 ± 0.3 

C18:4n-3 (stearidonic acid) 3.2 ± 0.4 n.d. 5.9 ± 0.1 2.0 ± 0.1 

C20:1n-9 (gadoleic acid) 37 ± 3 50 ± 3 13.1 ± 0.4 24 ± 2 

C20:3n-6 (DGLA) 0.82 ± 0.03 1.5 ± 0.1 3.2 ± 0.2 1.6 ± 0.2 

C20:4n-6 (araquidonic acid) 5.5 ± 0.6 n.d. 6.7 ± 0.1 127 ± 10 

C20:5n-3 (EPA) 36 ± 4 3.2 ± 0.2 79 ± 1 127 ± 10 

C22:1n-11 28 ± 2 19 ± 1 n.d. 5.6 ± 0.1 

C22:1n-9 4.2 ± 0.3 6.5 ± 0.4 n.d. 1.5 ± 0.1 

C22:4n-6 (adrenic acid) 4 ± 2 n.d. n.d. 5.4 ± 0.4 

C22:5n-3 (DPA) 8.0 ± 0.7 n.d. 38.4 ± 0.7 22 ± 1 

C22:6n-3 (DHA) 82 ± 8 5.2 ± 0.3 63 ± 1 130 ± 9 

C24:1 (nervonic acid) 7.8 ± 0.6 2.9 ± 0.1 2.5 ± 0.1 2.8 ± 0.3 

Total fatty acids 595 ± 53 388 ± 24 789 ± 7 691 ± 74 

Total Saturated Fatty Acids (SFA) 168 ± 15 13 ± 1 230 ± 1 223 ± 19 

Total MonoUnsaturated Fatty Acids (MUFA) 275 ± 24 359 ± 22 250 ± 3 156 ± 32 

Total PolyUnsaturated Fatty Acids (PUFA) 151 ± 14 16 ± 1 309 ± 5 312 ± 23 

Total ω3 fatty acids 132 ± 14 8 ± 1 100 ± 3 284 ± 20 

Total ω6 fatty acids 19 ± 1 11 ± 1 108 ± 2 29 ± 2 

558 
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Table 5. Volatile compounds produced by different fish degradation processes (adapted 559 

from Huss (Huss, 1995). 560 

Process Substrate Compounds produced 

Bacterial degradation Trimethylamine oxide Trimethylamine 

Cysteine H2S 

Methionine CH3SH, (CH3)2S 

Carbohydrates and lactate Acetate, CO2, H2O 

Inosine Hypoxanthine 

Glycine, serine, leucine Esters, ketones, aldehydes 

Urea NH3 

Enzymatic action Trimethylamine oxide Dimethylamine  

Autooxidation process Lipids Aldehydes 

Ketones 

Alcohols 

Short-chain organic acids 

Alkanes 

Anaerobic (spoilers) Aminoacids NH3, acetic acid, butyric 

acid, propionic acid 

561 
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Table 6. Volatile compounds found in the oil obtained from orange roughy offcuts by 562 

different methods: Cold Extraction (CE), Wet Reduction (WR), Enzymatic Extraction 563 

(EE) and Supercritical Fluid Extraction (SFE) 564 

Compound Odor 

characteristics 

Extraction method 

CE WR EE SFE 

Alkanes Decane ---     

2-methyl-Decane ---     

3-methyl-Decane ---     

Undecane ---     

Dodecane ---     

Tridecane ---     

Pentadecane ---     

Cyclohexadeccane ---     

2,6,10,14-tetramethyl-Pentadecane ---     

Aldehydes Heptanal Waxy, green     

Hexanal Green     

Nonanal Fatty, floral     

Acids Acetic acid Vinegar-like     

Amines Dimethylamine Fishy     

 found  not found 

565 
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Table 7. Heavy metals in marine oils obtained by SFE from different marine by-566 

products: Hake (H), Salmon (S) and Orange Roughy (OR) offcuts and Jumbo Squid 567 

(JS) livers. 568 

Raw 

material 

mg / kg (in oil fraction) 

Fe Cu Zn As Cd Hg Pb 

H 
A 83.4 ± 0.9 11.6 ± 0.4 114.7 ± 0.3 33.8 ± 0.1 n.d. 3 ± 1 n.d. 

B n.d. 0.07 ± 0.04 1 ± 1 0.05 ± 0.04 n.d. n.d. n.d. 

OR 
A 5.3 ± 0.1 0.8 ± 0.3 31.3 ±0. 3 2.6 ± 0.1 n.d. n.d. n.d. 

B n.d. n.d. 1.5 ± 0.6 0.26 ± 0.03 n.d. n.d. n.d. 

S 
A 22.3 ± 0.4 1.9 ± 0.2 27.2 ± 0.1 1.5 ± 0.2 n.d. 0.5 ± 0.2 n.d. 

B 2 ± 1 0.10 ± 0.01 n.d. 0.89 ± 0.05 n.d. n.d. n.d. 

JS 
A > 103 > 103 726 ± 1 207 ± 1 > 103 12 ± 1 5 ± 1 

B 10.3 ± 0.2 0.48 ± 0.01 1.1 ± 0.1 6.7± 0.3 n.d. n.d. 0.07 ± 0.01 

A: in fish by-products; B: in fish oil obtained by SFE 

n.d.: not detected 

569 
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Table 8. Lipid fraction recovered in each separator in SFE-fractionation of different fish 570 

oils obtained from different by-products: Hake (H) and Salmon (S) offcuts and Jumbo 571 

Squid (JS) livers. Extraction conditions: 25 ± 0.5 MPa / 313 ± 1 K. S1: 9 ± 0.5 MPa / 572 

308 ± 1 K. S2: 5 ± 0.5 MPa / 283 ± 1 K. 573 

 
g oil /100 g dry material  % 

S1 S2 total  S1 S2 

H 11 ± 1 7 ± 2 18 ± 1  63 37 

S 44 ± 2 7 ± 1 51 ± 1  86 14 

JS 14 ± 1 3 ± 1 17 ± 1  83 17 

574 
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Figure 1. Average distribution of edible portion and by-products in fish (Data taken 576 

from Rustad (2007) 577 
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Figure 2. Scheme of the different fish oil extraction procedures studied in this work. 580 

581 



31 

 

0 5 10 15 20 25
0

10
20
30
40
50
60
70
80
90

100
Raw material

 hake offcuts
 orange roughy offcuts
 salmon offcuts
 jumbo squid liver
 Kandiah & Spiro's model

Am
ou

nt
 o

f E
xt

ra
ct

(g
 o

il/1
00

 g
 d

ry
 ra

w 
m

at
er

ia
l)

Amount of Solvent
(kg SC-CO2/100 g dry raw material) 

 582 

Figure 3. Extraction curves obtained for SFE of oil from different fish by-products. The 583 

continuous lines represent the correlation of the experimental data through the model 584 

proposed by Kandiah & Spiro (1990). Extraction conditions: 25 ± 0.5 MPa / 313 ± 1 K. 585 

586 
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 589 

Figure 4. Estimation of the mass balance that results when obtaining oil from salmon 590 

offcuts by the four different extraction methods carried out at laboratory scale: Cold 591 

Extraction (CE), Wet Reduction (WR), Enzymatic Extraction (EE) and Supercritical 592 

Fluid Extraction (SFE) 593 
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Figure 5. Acidity value of the oil extracted from orange roughy (OR) and salmon (S) 596 

offcuts by different methods: Cold Extraction (CE), Wet Reduction (WR), Enzymatic 597 

Extraction (EE) and Supercritical Fluid Extraction (SFE). Determinations were carried 598 

out in triplicate and the results are the average values ± standard deviation. Means with 599 

the same letter within the same species are not significantly different (p > 0.05).  600 
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Figure 6. Total oxidation value (TOTOX) of the oil extracted from orange roughy (OR) 603 

and salmon (S) offcuts by different methods: Cold Extraction (CE), Wet Reduction 604 

(WR), Enzymatic Extraction (EE) and Supercritical Fluid Extraction (SFE). 605 

Determinations were carried out in triplicate and the results are the average values ± 606 

standard deviation. Means with the same letter within the same species are not 607 

significantly different (p > 0.05).  608 

609 
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Figure 7. Sensory analysis of the oil extracted from orange roughly offcuts by different 611 

methods: Cold Extraction (CE), Wet Reduction (WR), Enzymatic Extraction (EE) and 612 

Supercritical Fluid Extraction (SFE) 613 
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Figure 8. Principal Component Analysis (PCA) of the data obtained with the electronic 616 

nose for the oil extracted from orange roughly offcuts by different methods. 617 
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Figure 9. Total arsenic content found in the oil extracted from orange roughy (OR) and 620 

salmon (S) offcuts by different methods: Cold Extraction (CE), Wet Reduction (WR), 621 

Enzymatic Extraction (EE) and Supercritical Fluid Extraction (SFE). Determinations 622 

were carried out in triplicate and the results are the average values ± standard deviation. 623 

Means with the same letter within the same species are not significantly different (p > 624 

0.05).  625 

626 



38 

 

H S JS H S JS
0

20

40

60

80

100

b

b

b

b
b

b

a

a

a

a
a

a

 TAG                                           FFA

%
 w

t.
 Oil fraction recovered in S1
 Oil fraction recovered in S2

 627 

Figure 10. Mass percentage distribution of triacylglycerides (TAG) (left) and free fatty 628 

acids, (FFA) (right) between both separators in fish oil fractionation. H: Hake oil. S: 629 

Salmon oil. JS: Jumbo squid oil. Determinations were carried out in triplicate and the 630 

results are the average values ± standard deviation. Means with the same letter within 631 

the same species are not significantly different (p > 0.05).  632 
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 633 

Figure 11. FFA (free fatty acids) to TAG (triacylglycerides) mass ratio in fish oils 634 

before and after fractionation. H: Hake offcuts oil. S: Salmon offcuts oil. JS: Jumbo 635 

squid livers oil. Determinations were carried out in triplicate and the results are the 636 

average values ± standard deviation. Means with the same letter within the same species 637 

are not significantly different (p > 0.05).  638 
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Figure 12. Comparison among the fatty acid profiles of the lipid fractions obtained after 643 

fractionation of (a) hake offcuts oil, (b) salmon offcuts oil and (c) jumbo squid liver oil. 644 
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 646 
Figure 13. (a) LCFA/SCFA ratio in fish oil with and without fractionation. 647 

(b) SFA / (MUFA + PUFA) ratio in fish oil with and without fractionation. LCFA are 648 

considered fatty acids with a carbon number, C > 18, whereas SCFA are considered 649 

those with a carbon number, C ≤ 18. H: Hake oil. S: Salmon oil. JS: Jumbo squid oil. 650 

Determinations were carried out in triplicate and the results are the average values ± 651 

standard deviation. Means with the same letter within the same species are not 652 

significantly different (p > 0.05).  653 
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 655 
Figure 14. (a) Comparison between the acidity value and (b) total oxidation value 656 

(TOTOX), determined in oil fractions recovered in separator 1, S1, and in separator 2, 657 

S2; and oil without fractionation obtained from hake (H) and salmon (S) offcuts 658 

respectively. Determinations were carried out in triplicate and the results are the average 659 

values ± standard deviation. Means with the same letter within the same species are not 660 

significantly different (p > 0.05).  661 
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