Conceptos Acido-Base (2)

4.1.- Conceptos Acido-Base

4.1.- Conceptos Acido-Base

Profesor: Rafael Aguado Bernal

Medida de la fortaleza Acido-Base

Conceptos No Próticos de las Reacciones Acido-Base

Concepto de Lux

Base BaO + H₂O
$$\longrightarrow$$
 Ba(OH)₂ (aq) \longrightarrow BaCO₃ (s) + H₂O
Acido CO₂ + H₂O \longrightarrow H₂CO₃ (aq)
BaSe Acido dador aceptor

Se conocen otros muchos ejemplos de reacciones directas entre óxidos básicos y óxidos ácidos en ausencia de disolvente, y por lo tanto en ausencia de protones.

$$3 \text{ Na}_2\text{O} + \text{P}_2\text{O}_5 \longrightarrow 2 \text{ Na}_3\text{PO}_4$$
 (siderurgia)
 $\text{CaO} + \text{SiO}_2 \longrightarrow \text{CaSiO}_3$ (termitas)

La definición de Bronsted

AH

Acido, cede protones

Base, capta protones

AH

Acido

Base

no es aplicable en estos casos

4.1.- Conceptos Acido-Base

Profesor: Rafael Aguado Bernal

Medida de la fortaleza Acido-Base

Conceptos No Próticos de las Reacciones Acido-Base

Concepto de Lux

Acido: es un aceptor de grupos óxido

 $B \longrightarrow O^{2-} + A$ Base Acido

Base: es un dador de grupos óxido

Concepto particularmente aplicable a la química a alta temperatura, tal como la cerámica y la metalurgia. Algunas menas pueden ser disueltas en Na₂S₂O₇ para extraer el mineral:

$$TiO_2 + Na_2S_2O_7 \longrightarrow Na_2SO_4 + (TiO)SO_4$$

Base Acido

Análogamente a otras definiciones ácido-base, podemos tener óxidos anfóteros:

$$ZnO + S_2O_7^{2-} \longrightarrow Zn^{2+} + 2 SO_4^{2-}$$

Base Acido

$$ZnO + Na_2O \longrightarrow 2 Na^+ + ZnO_2^{2-}$$

Acido Base

Profesor: Rafael Aguado Bernal

Medida de la fortaleza Acido-Base

Conceptos No Próticos de las Reacciones Acido-Base

Concepto de Lux

Este esquema de transferencia de iones óxido de Lux, puede ser ampliado para cualquier otro proceso que implique la transferencia de un anión

$$B \longrightarrow X^{n-} + A$$
Base Acido

Base: dador de an	iones	Acido: aceptor de an	iones		
3 NaF	+	AlF ₃		$3 \text{ Na}^+ + \text{AlF}_6^{3-}$	F ⁻
Na ₂ S	+	CS_2		$2 \text{ Na}^+ + \text{CS}_3^{2-}$	S^{2-}
NaEt	+	Et ₂ Zn		$Na^+ + ZnEt_3^-$	Et ⁻
NaH	+	AlH_3		$Na^+ + AlF_4^-$	H ⁻

4.1.- Conceptos Acido-Base

Profesor: Rafael Aguado Bernal

Medida de la fortaleza Acido-Base

Conceptos No Próticos de las Reacciones Acido-Base

Acidos y Bases de Lewis

En 1938 Lewis propuso la siguiente definición operacional de ácidos y bases, en términos de las reacciones que pueden experimentar:

Neutralización: Los ácidos y bases reaccionan rápidamente para neutralizarse entre sí.

Desplazamiento: Un ácido fuerte desplaza a uno débil de sus compuestos.

Una base fuerte desplaza a una débil de sus compuestos.

Valoración: Puede utilizarse un indicador para determinar el punto final de la neutralización.

Catálisis: Los ácidos (y las bases) pueden catalizar muchas reacciones.

Estas propiedades ya habían sido ampliamente asociados con reacciones ácido-base próticas. Lewis señaló que compuestos No próticos pueden exhibir propiedades ácido-base, tales como SO₃ (ac), SnCl₄ (ac), AlCl₃ (ac) y BF₃ (ac), entre otros.

Acidos: Disponen de un orbital vacío que puede aceptar un par electrónico para formar un enlace covalente.

Base: Disponen de un par electrónico no compartido, par solitario.

Lewis extiende su concepto ácido-base a compuestos no iónicos, centrando su atención en la fuerza del nuevo enlace covalente formado

^{*} Douglas, B.; McDaniel, D.; Alexander, J., "Concepts and Models of Inorganic Chemistry", 3a Ed., John Wiley & Sons, 1994, pp 334.

4.1.- Conceptos Acido-Base

Profesor: Rafael Aguado Bernal

Medida de la fortaleza Acido-Base

Conceptos No Próticos de las Reacciones Acido-Base

Acidos y Bases de Lewis – Fuerza de los ácidos y bases de Lewis

Acidos: ... puede aceptar un par electrónico ...

Conforme aumenta la electronegatividad de los sustituyentes,
retiran densidad electrónica del átomo central,
aumenta su avidez por capturar electrones,
aumenta la acidez del ácido de Lewis

Base: ... puede compartir (ceder) un par electrónico ...

Conforme aumenta la electronegatividad de los sustituyentes,

:NF₃ retiran densidad electrónica del átomo central,

:NH₃ retiene con más fuerza a su par solitario, no lo comparte

disminuye la basicidad de la base de Lewis

Tema 4: Conceptos básicos de reactividad química

4.1.- Conceptos Acido-Base

Profesor: Rafael Aguado Bernal

Medida de la fortaleza Acido-Base

Conceptos No Próticos de las Reacciones Acido-Base

Acidos y Bases de Pearson – Duros y blandos

Acidos Duros – AD – Cationes muy pequeños y muy cargados.

Cationes fuertemente polarizantes $r^+ \downarrow, q^+ \uparrow$

H⁺, Alcalinos, alcalinotérreos, Elementos de transición ligeros en altos estados de oxidación (Ti⁴⁺, Cr³⁺, Fe³⁺, Co³⁺)

Acidos Blandos – AB – Cationes grandes o con poca carga.

Cationes poco polarizantes $r^+ \uparrow, q^+ \downarrow$

Elementos de transición más pesados o en bajo estado de

oxidación (Ag⁺, Cu₂²⁺, Hg₂²⁺, Hg²⁺, Pd²⁺, Pt²⁺)

Bases Duras – BD – Aniones muy pequeños o con poca carga.

Aniones poco polarizables $r^- \downarrow$, $q^- \downarrow$

OH⁻, haluros, que atraen fuertemente sus electrones

Bases Blandas – BB – Aniones grandes y muy cargados.

Aniones fuertemente polarizables $r^-\uparrow, q^-\uparrow$

Sujetan poco a sus electrones (I⁻, S²⁻, H⁻)

El duro con el duro → pequeños → poco deformables → Interacción electrostática El blando con el blando → grandes → polarización → Interacción covalente

4.1.- Conceptos Acido-Base

Profesor: Rafael Aguado Bernal

Medida de la fortaleza Acido-Base

Conceptos No Próticos de las Reacciones Acido-Base

Acidos y Bases de Pearson – Clasificación como duros o blandos

$$\begin{array}{cccc} Referencia \ como & AD & H^+ \\ & AB & CH_3Hg^+ \end{array}$$

$$(B-H)^{+} + CH_{3}Hg^{+} \longrightarrow (CH_{3}Hg-B)^{+} + H^{+} \qquad K_{eq}$$

 K_{eq} \uparrow , desplazado a la derecha, B prefiere unirse al AB, B es una BB K_{eq} \downarrow , desplazado a la izquierda, B prefiere unirse al AD, B es una BD

El orden de K_{eq} coincide con el orden de dureza blandura

 $K_{\rm eq}$ mayor, base más blanda $K_{\rm eq}$ menor, base más dura

Conceptos ácido-base, duro-blanco, son conceptos "relativos"

Profesor: Rafael Aguado Bernal

Medida de la fortaleza Acido-Base

Conceptos No Próticos de las Reacciones Acido-Base

Acidos y Bases de Pearson – Clasificación como duros o blandos

Hard Acids	Borderline Acids	Soft Acids
H ⁺ , Li ⁺ , Na ⁺ , K ⁺ , Be ²⁺ , Mg ²⁺ , Ca ²⁺ , Sr ²⁺	$B(CH_3)_3$	$(BH_3)_2$
BF_3 , Al^{3+} , $AlCl_3$, $Al(CH_3)_3$	Fe ²⁺ , Co ²⁺ , Ni ²⁺ , Cu ²⁺ , Zn ²⁺	GaCl ₃ , GaBr ₃ , GaI ₃
Mn^{2+} , Cr^{3+} , Cr^{VI} , Mn^{VII} , Mo^{VI} , W^{VI}	Ru^{2+} , Rh^{2+} , Sn^{2+} , Sb^{3+}	Cu^+ , $Co(CN)_5^{3-}$, Ag^+ , Cd^{2+}
Sc^{3+} , La^{3+} , Ce^{3+} , Lu^{3+} , Ti^{4+} , Zr^{4+} , Hf^{4+}	Rh^{3+} , Ir^{3+} , Pb^{2+} , Bi^{3+}	Pt ²⁺ , Pt ⁴⁺ , Au ⁺ , Hg ²⁺ , Hg ²⁺ , Tl
VO^{2+} , UO_2^+ , Th^{4+} , Pu^{4+}		M^0
CO ₂ , SO ₃		
Hard Bases	Borderline Bases	Soft Bases
O^{2-} , OH^- , F^- , Cl^- , CO_3^{2-} , NO_3^- , $CH_3CO_2^-$	$C_5H_5^-, N_2, :NO_2^-$	H ⁻ , R ⁻ , CN ⁻ , I ⁻
PO ₄ ³⁻ , SO ₄ ²⁻ , ClO ₄ ⁻	$C_6H_5NH_2, N_3^-, :SO_3^{2-}, Br^-$	C ₂ H ₄ , RNC, CO
H_2O , ROH, RO $^-$, R_2O	SCN: - (N donor)	R_3P , $(RO)_3P$, R_3As , RSH , R_2S
NH_3 , RNH_2 , N_2H_4		RS^- , $S_2O_3^{2-}$, : SCN^- (S donor)

Douglas, B.; McDaniel, D.; Alexander, J., "Concepts and Models of Inorganic Chemistry", 3^a Fig - 126 Ed., John Wiley & Sons, 1994, pp 342.

Li⁺, Na⁺, K⁺, ... son ácidos duros Na⁺ es más duro que K⁺, pero más blando que Li⁺

4.1.- Conceptos Acido-Base

Profesor: Rafael Aguado Bernal

Medida de la fortaleza Acido-Base

Conceptos No Próticos de las Reacciones Acido-Base

Acidos y Bases de Pearson – Clasificación como duros o blandos

Huheey, J. E., Keiter, R. L., Keiter, E. A., "Inorganic Chemistry: Principles of Structure and Reactivity", 4a Ed., Harper Collins, 1993, pp 347.

Fig - 127

Bases	
Hard bases	
NH ₃ , RNH ₂ , N ₂ H ₄ H ₂ O, OH ⁻ , O ²⁻ , ROH, RO ⁻ , R ₂ O CH ₃ COO ⁻ , CO ³⁻ ₃ , NO ³ ₃ , PO ³⁻ ₄ , SO ²⁻ ₄ , CIO ⁻ ₄ F ⁻ (Cl ⁻)	
Borderline bases	
$C_6H_5NH_2$, C_5H_5N , N_3^- , N_2 NO_2^- , SO_3^{2-} Br^-	
Soft bases	
H ⁻ R ⁻ , C ₂ H ₄ , C ₆ H ₆ , CN ⁻ , RNC, CO SCN ⁻ , R ₃ P, (RO) ₃ P, R ₃ As R ₂ S, RSH, RS ⁻ , S ₂ O ₃ ² I ⁻	

```
Acids
 Hard acids
H+, Li+, Na+, K+(Rb+, Cs+)
\begin{array}{l} Be^{2^{+}},\ Be(CH_{3})_{2},\ Mg^{2^{+}},\ Ca^{2^{+}},\ Sr^{2^{+}}(Ba^{2^{+}})\\ Sc^{3^{+}},\ La^{3^{+}},\ Ce^{4^{+}},\ Gd^{3^{+}},\ Lu^{3^{+}},\ Th^{4^{+}},\ U^{4^{+}},\ UO_{2}^{2^{+}},\ Pu^{4^{+}}\\ Ti^{4^{+}},\ Zr^{4^{+}},\ Hf^{4^{+}},\ VO^{2^{+}},\ Cr^{3^{+}},\ Cr^{6^{+}},\ MoO^{3^{+}},\ WO^{4^{+}},\ Mn^{2^{+}},\ Mn^{7^{+}},\ Fe^{3^{+}}, \end{array}
BF<sub>3</sub>, BCl<sub>3</sub>, B(OR)<sub>3</sub>, Al<sup>3+</sup>, Al(CH<sub>3</sub>)<sub>3</sub>, AlCl<sub>3</sub>, AlH<sub>3</sub>, Ga<sup>3+</sup>, In<sup>3+</sup>
CO<sub>2</sub>, RCO<sup>+</sup>, NC<sup>+</sup>, Si<sup>4+</sup>, Sn<sup>4+</sup>, CH<sub>3</sub>Sn<sup>3+</sup>, (CH<sub>3</sub>)<sub>2</sub>Sn<sup>2+</sup>
 N3+, RPO+, ROPO+, As3+
SO<sub>3</sub>, RSO<sub>2</sub><sup>+</sup>, ROSO<sub>2</sub><sup>+</sup>
Cl3+, Cl7+, 15+, 17+
HX (hydrogen bonding molecules)
 Borderline acids
 Fe2+, Co2+, Ni2+, Cu2+, Zn2+
 Rh3+, Ir3+, Ru3+, Os2+
 B(CH<sub>3</sub>)<sub>3</sub>, GaH<sub>3</sub>
 R<sub>3</sub>C<sup>+</sup>, C<sub>6</sub>H<sub>5</sub><sup>+</sup>, Sn<sup>2+</sup>, Pb<sup>2+</sup>
 NO+, Sb3+, Bi3+
 SO,
 Soft acids
 Co(CN)3-, Pd2+, Pt2+, Pt4+
 Cu<sup>+</sup>, Ag<sup>+</sup>, Au<sup>+</sup>, Cd<sup>2+</sup>, Hg<sup>2+</sup>, Hg<sup>2+</sup>, CH<sub>3</sub>Hg<sup>+</sup>
 BH3, Ga(CH3)3, GaCl3, GaBr3, Gal3, TI+, TI(CH3)3
 CH2, carbenes
 π-acceptors: trinitrobenzene, chloroanil, quinones, tetracyanoethylene, etc.
 HO<sup>+</sup>, RO<sup>+</sup>, RS<sup>+</sup>, RSe<sup>+</sup>, Te<sup>4+</sup>, RTe<sup>+</sup>
 Br,, Br+, I2, I+, ICN, etc.
 O, Cl, Br, I, N, RO, RO,
 Mo (metal atoms) and bulk metals
```

4.1.- Conceptos Acido-Base

Profesor: Rafael Aguado Bernal

Medida de la fortaleza Acido-Base

Conceptos No Próticos de las Reacciones Acido-Base

Fuerza de los sistemas ácido-base y su relación con la dureza-blandura

Duro-blando, alude a la especial estabilidad de las interacciones duro-duro y blando-blando, que debe distinguirse claramente de la fuerza inherente del sistema ácido o base.

 OH^- y F^- son dos bases duras, OH^- es unas 10^{13} veces más básico que F^- (ref H^+ /MeHg $^+$). SO_3^{2-} y Et_3P son dos bases blandas, Et_3P es unas 10^7 veces más fuerte que SO_3^{2-} (ref H^+ /MeHg $^+$).

Un ácido o base fuerte puede desplazar a otro más débil, aunque esto "aparentemente" viole el principio de dureza-blandura.

SO₃²⁻ (base más fuerte) desplaza al F⁻ (base más débil), a partir de un ácido duro H⁺

$$SO_3^{2-} + HF$$
 \longrightarrow $HSO_3^- + F^ K_{eq} = 10^4$
Base Acido Base
fuerte fuerte débil débil
BB AD-BD AD-BB BD

OH⁻ (base muy fuerte) desplaza al SO₃²⁻ (base más débil), a partir de un ácido blando MeHg⁺

$$OH^- + CH_3HgSO_3^- \longrightarrow CH_3HgOH + SO_3^{2-}$$
 $K_{eq} = 10$
BD AB-BB AB-BD BB

4.1.- Conceptos Acido-Base

Profesor: Rafael Aguado Bernal

Medida de la fortaleza Acido-Base

Conceptos No Próticos de las Reacciones Acido-Base

Fuerza de los sistemas ácido-base y su relación con la dureza-blandura

Duro-blando, alude a la especial estabilidad de las interacciones duro-duro y blando-blando, que debe distinguirse claramente de la fuerza inherente del sistema ácido o base.

OH⁻ y F⁻ son dos bases duras, OH⁻ es unas 10^{13} veces más básico que F⁻ (ref H⁺/MeHg⁺). SO_3^{2-} y Et_3P son dos bases blandas, Et_3P es unas 10^7 veces más fuerte que SO_3^{2-} (ref H⁺/MeHg⁺).

Un ácido o base fuerte puede desplazar a otro más débil, aunque esto "*aparentemente*" viole el principio de dureza-blandura.

En ambos casos, la fuerza de las bases $(SO_3^{2-} > F^-)$ $(OH^- > SO_3^{2-})$ son lo suficientemente grandes como para forzar a estas reacciones hacia la derecha.

Sólo "aparentemente", puesto que si se encuentra una situación competitiva, se aplica la regla duro-blando.

4.1.- Conceptos Acido-Base

Profesor: Rafael Aguado Bernal

Medida de la fortaleza Acido-Base

Conceptos No Próticos de las Reacciones Acido-Base

Fuerza de los sistemas ácido-base y su relación con la dureza-blandura

SO₃²⁻ (base más fuerte) desplaza al F⁻ (base más débil), a partir de un ácido duro H⁺

$$SO_3^{2-} + HF$$
 \longrightarrow $HSO_3^- + F^ K_{eq} = 10^4$
Base Acido Base
fuerte fuerte débil débil
BB AD-BD AD-BB BD

OH⁻ (base muy fuerte) desplaza al SO₃²⁻ (base más débil), a partir de un ácido blando MeHg⁺

$$OH^- + CH_3HgSO_3^- \longrightarrow CH_3HgOH + SO_3^{2-} K_{eq} = 10$$
BD AB-BB AB-BD BB

CH₃HgF + HSO₃⁻
$$\longrightarrow$$
 CH₃HgSO₃⁻ + HF $K_{eq} \approx 10^3$ AB-BD AD-BB $K_{eq} \approx 10^3$ AB-BB AD-BD $K_{eq} \approx 10^3$ AB-BD AD-BB $K_{eq} \approx 10^7$ AB-BD AD-BB $K_{eq} \approx 10^7$

4.1.- Conceptos Acido-Base

Profesor: Rafael Aguado Bernal

Medida de la fortaleza Acido-Base

Conceptos No Próticos de las Reacciones Acido-Base

Simbiosis La dureza o blandura de un sitio ácido o básico no es algo inherente al átomo particular, sino que puede ser influido decisivamente por los sustituyentes que soporta.

La adición de sustituyentes blandos y polarizables, ablanda un sitio que era duro, y La adición de sustituyentes electrón-atractores (fuertemente electronegativos), endurece el sitio.

- * El átomo ácido de boro, B³⁺, es intermedio entre duro y bando. Con *sustituyentes duros* como F⁻ (BD), obtenemos el BF₃ un *ácido* de Lewis *duro*. Con *sustituyentes blandos* como H⁻ (BB), obtenemos el BH₃ un *ácido* de Lewis *blando*.
- * El ácido duro "prefiere" incorporar un 4º ligando duro, y el ácido blando lo "prefiere" blando.

$$BF_3 + F^- \longrightarrow BF_4^ AD + BD$$
 $B_2H_6 + 2H^- \longrightarrow 2BH_4^ AB + BB$

* En una reacción de competencia, duro con duro y blando con blando

$$BF_3H^- + BH_3F^- \longrightarrow BF_4^- + BH_4^-$$

Los metanos isoelectrónicos fluorizados se comportan de modo similar

$$CF_3H + CH_3F \longrightarrow CF_4 + CH_4$$

Profesor: Rafael Aguado Bernal

Medida de la fortaleza Acido-Base

Conceptos No Próticos de las Reacciones Acido-Base

Acidos y bases de Pearson – Bases teóricas de la dureza y la blandura

De modo relativamente sencillo

Interacciones Acido duro – base dura son básicamente de tipo electrostático, "iónico".

 $(Li^+, Na^+, K^+) - (F^-, OH^-)$

 $U_r = \frac{Z^+ \cdot Z^-}{r^+ + r^-}$

Cuanto más pequeños sean los iones (más duros)

Mayor será la fuerza de interacción

El duro con el duro

Interacciones Acido blando – base blanda son básicamente de tipo covalente

 $(Ag^+, Hg^{2+}) - (Cl^-, I^-)$

Acidos blandos, cationes de transición que NO tienen configuración de Gas Noble, luego son más polarizantes, muy en particular los cationes con configuración "d¹⁰".

Bases blandas, fuertemente polarizables, unidas a ácidos polarizantes.

Una mayor polarización apoya la existencia de una interacción covalente.

Tema 4: Conceptos básicos de reactividad química

4.1.- Conceptos Acido-Base

Profesor: Rafael Aguado Bernal

Medida de la fortaleza Acido-Base

Ecuación de Drago-Wayland

En 1965 Drago y Wayland introducen una ecuación empírica de 4 parámetros para describir la energía que acompaña a la reacción entre ácidos y bases débiles y neutros (sin carga) en disolventes poco solvatantes o en fase gaseosa. $A + B \longrightarrow A-B$

$$-\Delta H = E_A \cdot E_B + C_A \cdot C_B$$

 E_A , C_A Son los parámetros del ácido, que arbitrariamente toman para el I_2 los valores $E_A = 0,50$ y $C_A = 2$

E_B, C_B Son los parámetros de la base

Fig - 128 y 129

E_A, E_B Reflejan la parte electrostática de la interacción ácido-base

C_A, C_B Reflejan la parte covalente de la interacción ácido-base

En el caso de una reacción de intercambio entre dos aductos ácido base

$$A_1B_1 + A_2B_2 \longrightarrow A_1B_2 + A_2B_1$$

La ecuación adopta la forma

$$\Delta H = \Delta E_A \cdot \Delta E_B + \Delta C_A \cdot \Delta C_B$$

^{*} Douglas, B.; McDaniel, D.; Alexander, J., "Concepts and Models of Inorganic Chemistry", 3a Ed., John Wiley & Sons, 1994, pp 343.

^{*} Huheey, J. E., Keiter, R. L., Keiter, E. A., "Inorganic Chemistry: Principles of Structure and Reactivity", 4^a Ed., Harper Collins, 1993, pp 336.

4.1.- Conceptos Acido-Base

Profesor: Rafael Aguado Bernal

Medida de la fortaleza Acido-Base Ecuación de Drago-Wayland

Estos datos pueden utilizarse para seleccionar disolventes que tengan aproximadamente el mismo grado de interacción ácido-base que los solutos comparando los parámetros E y C.

		E	C
Amina 1 ^a	$MeNH_2$	2,16	3,12
Amina 2 ^a	Me_2NH	1,80	4,21 5,61
Amina 3 ^a	Me_3N	1,21	5,61
Piridina		1,78	3,54

La Piridina tendría un comportamiento intermedio entre una amina 1^a y una amina 2^a

Douglas, B.; McDaniel, D.; Alexander, J., "Concepts and Models of Inorganic Chemistry", 3^a Ed., John Wiley & Sons, 1994, pp 345.

<i>Base</i> Fig - 129	E_B	C_B	T_B
NH ₃	2.31	2.04	0.56
CH ₃ NH ₂	2.16	3.12	0.59
(CH ₃) ₂ NH	1.80	4.21	0.64
(CH ₃) ₃ N	1.21	5.61	0.75
C ₂ H ₅ NH ₂	2.35	3.30	0.54
$HC(C_2H_4)_3N$	0.80	6.72	0.83
C_5H_5N	1.78	3.54	0.73
CH ₃ CN	1.64	0.71	0.83
$HC(O)N(CH_3)_2$			
(dmf)	2.19	1.31	0.74
$(C_2H_5)_2O$	1.80	1.63	0.76
$O(C_2H_4)_2O$	1.86	1.29	0.71
(CH ₃) ₂ SO			
(dmso)	2.40	1.47	0.65
(CH ₃) ₂ O	1.68	1.50	0.73
(CH ₃) ₂ S	0.25	3.75	1.07
(CH ₃) ₃ P	1.46	3.44	0.90

^{*} Douglas, B.; McDaniel, D.; Alexander, J., "Concepts and Models of Inorganic Chemistry", 3a Ed., John Wiley & Sons, 1994, pp 343.

^{*} Huheey, J. E., Keiter, R. L., Keiter, E. A., "Inorganic Chemistry: Principles of Structure and Reactivity", 4a Ed., Harper Collins, 1993, pp 336.

Tema 4: Conceptos básicos de reactividad química

4.1.- Conceptos Acido-Base

Profesor: Rafael Aguado Bernal

Medida de la fortaleza Acido-Base

Ecuación de Drago-Wayland

Una modificación de la ecuación de Drago-Wayland incluye el término $W = R_A \cdot T_B$, que habitualmente toma valor 0 para ácidos y bases neutros, pero que cobra importancia en el caso de ácidos catiónicos y/o bases aniónicas.

$$-\Delta H = E_A \cdot E_B + C_A \cdot C_B + R_A \cdot T_B$$

 E_A , C_A Son los parámetros del ácido, que arbitrariamente toman para el I_2 los valores

 $E_A = 0.50 \text{ y } C_A = 2.00$

E_B, C_B Son los parámetros de la base

E_A, E_B Reflejan la parte electrostática de la interacción ácido-base

C_A, C_B Reflejan la parte covalente de la interacción ácido-base

R_A Término para el ácido como aceptor Fig - 128 y 129

T_B Término para la base como transmisor / donador

^{*} Douglas, B.; McDaniel, D.; Alexander, J., "Concepts and Models of Inorganic Chemistry", 3a Ed., John Wiley & Sons, 1994, pp 343.

^{*} Huheey, J. E., Keiter, R. L., Keiter, E. A., "Inorganic Chemistry: Principles of Structure and Reactivity", 4a Ed., Harper Collins, 1993, pp 336.

QUIMICA GENERAL I

Tema 4: Conceptos básicos de reactividad química

Química Inorgánica

4.1.- Conceptos Acido-Base

ofesor: Rafael Aguado Bernal

Medida de la fortaleza Acido-Base Ecuación de Drago-Wayland

Douglas, B.; McDaniel, D.; Alexander, J., "Concepts and Models of Inorganic Chemistry", 3a Ed., John Wiley & Sons, 1994, pp 345.

Fig - 129

TILL 7			FTP	/7 70\1 C		Profesor: Raj	
Table 7.6	E and C par	rameters	Lequation	(7.78)] for some	e acids an	d bases"	
Acid	E_A	C_A	R_A	Acid	E_A	C_A	R_A
I_2	0.50	2.00		H ⁺	45.00	13.03	130.21
H_2O	1.54	0.13	0.20	Li ⁺	11.72	1.45	24.21
H_2S	0.77	1.46	0.56	K ⁺	3.78	0.10	20.79
HF	2.03	0.30	0.47	NH ₄ ⁺	4.31	4.31	18.52
HCl	3.69	0.74	0.55	$(CH_3)_2NH_2^+$	3.21	0.70	20.72
HCN	1.77	0.50	0.54	$(CH_3)_3NH^+$	2.60	1.33	15.95
CH₃OH	1.25	0.75	0.39	$(CH_3)_4N^+$	1.96	2.36	8.33
C_2H_5OH	1.34	0.69	0.41	$C_5H_5NH^+$	1.81	1.33	21.72
C ₆ H ₅ OH	2.27	1.07	0.39	H_3O^+	13.27	7.89	20.01
(CH ₃) ₃ COH	1.36	0.51	0.48	$(H_2O)_2H^+$	11.39	6.03	7.36
HCCl ₃	1.49	0.46	0.45	$(H_2O)_3H^+$	11.21	4.66	2.34
HCF ₃	1.32	0.91	0.27	$(H_2O)_4H^+$	10.68	4.11	-3.25
CH ₃ CO ₂ H	1.72	0.86	0.63	CH ₃ ⁺	19.70	12.61	55.09
$B(OCH_3)_3$	0.54	1.22	0.84	50000 SARP RAY			
$B(C_2H_5)_3$	1.70	2.71	0.61				
PF ₃	0.61	0.36	0.87				
AsF ₃	1.48	1.14	0.78				
SO_2	0.56	1.52	0.86				_
Base	E_B	C_B	T_B	Base	E_B	C_B	T_B
NH ₃	2.31	2.04	0.56	CH ₃ OH	1.80	0.65	0.70
CH ₃ NH ₂	2.16	3.12	0.59	C ₂ H ₅ OH	1.85	1.09	0.70
(CH ₃) ₂ NH	1.80	4.21	0.64	C ₆ H ₆	0.70	0.45	0.81
(CH ₃) ₃ N	1.21	5.61	0.75	H ₂ S	0.04	1.56	1.13
C ₂ H ₅ NH ₂	2.35	3.30	0.54	HCN	1.19	0.10	0.90
$HC(C_2H_4)_3N$	0.80	6.72	0.83	H ₂ O	2.28	0.10	0.43
C ₅ H ₅ N	1.78	3.54	0.73				
CH ₃ CN	1.64	0.71	0.83	F=	9.73	4.28	37.40
HC(O)N(CH ₃)				Cl-	7.50	3.76	12.30
(dmf)	2.19	1.31	0.74	Br -	6.74	3.21	5.86
$(C_2H_5)_2O$	1.80	1.63	0.76	I-	5.48	2.97	6.26
$O(C_2H_4)_2O$	1.86	1.29	0.71	CN-	7.23	6.52	9.20
(CH ₃) ₂ SO				OH-	10.43	4.60	50.73
(dmso)	2.40	1.47	0.65	CH ₃ O	10.03	4.42	33.77
(CH ₃) ₂ O	1.68	1.50	0.73	NATI DESIGNATIONS			
$(CH_3)_2S$	0.25	3.75	1.07				
(CH ₃) ₃ P	1.46	3.44	0.90				

^{*} Douglas, B.; McDaniel, D.; Alexander, J., "Concepts and Models of Inorganic Chemistry", 3a Ed., John Wiley & Sons, 1994, pp 343.

^{*} Huheey, J. E., Keiter, R. L., Keiter, E. A., "Inorganic Chemistry: Principles of Structure and Reactivity", 4a Ed., Harper Collins, 1993, pp 336.

Tema 4: Conceptos básicos de reactividad química

4.1.- Conceptos Acido-Base

Profesor: Rafael Aguado Bernal

Medida de la fortaleza Acido-Base Ecuación de Drago-Wayland

Huheey, J. E., Keiter, R. L., Keiter, E. A., "Inorganic Chemistry: Principles of Structure and Reactivity", 4a Ed., Harper Collins, 1993, pp 337.

Fig - 128

Acid	EA	CA	RA	Acid	EA	CA	RA
			n _A	H ⁺			
	0.50	2.00	0.20		45.00	13.03	130.21
H ₂ O	1.54	0.13	0.20	CH ₃ ⁺	19.70	12.61	55.09
SO ₂	0.56	1.52	0.85	Li ⁺	11.72	1.45	24.21
HF^b	2.03	0.30	0.47	K ^{+b}	3.78	0.10	20.79
HCN ^b	1.77	0.50	0.54	NO ^{+b}	0.1	6.86	45.99
CH ₃ OH	1.25	0.75	0.39	NH ₄ ^{+b}	4.31	4.31	18.52
H_2S^b	0.77	1.46	0.56	(CH ₃) ₂ NH ₂ ^{+b}	3.21	0.70	20.72
HCI ^b	3.69	0.74	0.55	$(CH_3)_4N^{+b}$	1.96	2.36	8.33
C ₆ H ₅ OH	2.27	1.07	0.39	C,H,NH+h	1.81	1.33	21.72
(CH ₃) ₃ COH	1.36	0.51	0.48	(C2H5)2NH+b	2.43	2.05	11.81
HCCI,	1.49	0.46	0.45	(CH ₃) ₃ NH ^{+b}	2.60	1.33	15.95
CH ₃ CO ₂ H ^b	1.72	0.86	0.63	H ₃ O ⁺	13.27	7.89	20.01
CF,CH,OH	2.07	1.06	0.38	(H,O),H+	11.39	6.03	7.36
C,H,OH	1.34	0.69	0.41	(H ₂ O) ₃ H ⁺	11.21	4.66	2.34
i-C ₃ H ₇ OH	1.14	0.90	0.46	(H ₂ O) ₄ H ^{+b}	10.68	4.11	3.25
PF_3^b	0.61	0.36	0.87	(CH ₃) ₃ Sn ⁺	7.05	3.15	26.93
B(OCH ₃) ₃ ^b	0.54	1.22	0.84	(C ₅ H ₅)Ni ⁺	11.88	3.49	32.64
AsF_3^b	1.48	1.14	0.78	(CH ₃)NH ₃ +b	2.18	2.38	
Fe(CO) ₅		0.27		(CH ₃)NH ₃	2.10	2.30	20.68
	0.10		1.00				
CHF ₃	1.32	0.91	0.27				
$B(C_2H_5)_3^b$	1.70	2.71	0.61				THE STREET
Basec	EB	CB	TB	Basec	EB	CB	TB
NH ₃	2.31	2.04	0.56	C ₅ H ₅ NO	2.29	2.33	0.67
CH ₃ NH ₂	2.16	3.12	0.59	(CH ₃) ₃ P	1.46	3.44	0.90
(CH ₃) ₂ NH	1.80	4.21	0.64	(CH ₃) ₂ O	1.68	1.50	0.73
(CH ₃) ₃ N	1.21	5.61	0.75	(CH ₃) ₂ S	0.25	3.75	1.07
C2H5NH2	2.35	3.30	0.54	CH ₃ OH	1.80	0.65	0.70
$(\tilde{C}_2H_5)_3\tilde{N}$	1.32	5.73	0.76	C ₂ H ₅ OH	1.85	1.09	0.70
HC(C2H4)3N	0.80	6.72	0.83d	C ₆ H ₆	0.70	0.45	0.81
C ₅ H ₅ N	1.78	3.54	0.73	H ₂ S ^h	0.04	1.56	1.13
4-CH ₃ C ₅ H ₄ N	1.74	3.93	0.73d	HCN ^b	1.19	0.10	0.90
3-CH ₃ C ₅ H ₄ N	1.76	3.72	0.744	H ₂ CO ^b	1.56	0.10	0.76
2 CIC H N	1.78	2.81	0.754	CH ₃ Cl ^b	2.54	0.10	0.70
3-CIC ₅ H ₄ N				CH ₃ CHO ^b			
CH ₃ CN	1.64	0.71	0.83	CH ₃ CHO	1.76	0.81	0.74
CH ₃ C(O)CH ₃	1.74	1.26	0.80	H ₂ O ^b	2.28	0.10	0.43
CH ₃ C(O)OCH ₃	1.63	0.95	0.86	(CH ₃) ₃ COH ^b	1.92	1.22	0.71
CH ₃ C(O)OC ₂ H ₅	1.62	0.98	0.89	C ₆ H ₅ CN ^b	1.75	0.62	0.85
HC(O)N(CH ₃) ₂	2.19	1.31	0.74d	F-	9.73	4.28	37.40
$(C_2H_5)_2O$	1.80	1.63	0.76	CI-b	7.50	3.76	12.30
O(CH2CH2)2O	1.86	1.29	0.71	Br ^{-b}	6.74	3.21	5.86
(CH)O	1.64	2.18	0.75	I	5.48	2.97	6.26
(CH ₂) ₄ U							
(CH ₂) ₅ O	1.70	2.02	0.744	CN-	7.23	6.52	9.20
(CH ₂) ₄ O (CH ₂) ₅ O (C ₂ H ₅) ₂ S	1.70 0.24	2.02 3.92	0.74 ^d 1.10 ^d	CN ⁻ OH ^{-b} CH ₃ O ^{-b}	7.23	6.52 4.60	9.20 50.73

^{*} Douglas, B.; McDaniel, D.; Alexander, J., "Concepts and Models of Inorganic Chemistry", 3a Ed., John Wiley & Sons, 1994, pp 343.

^{*} Huheey, J. E., Keiter, R. L., Keiter, E. A., "Inorganic Chemistry: Principles of Structure and Reactivity", 4ª Ed., Harper Collins, 1993, pp 336.

Tema 4: Conceptos básicos de reactividad química

4.1.- Conceptos Acido-Base

Profesor: Rafael Aguado Bernal

Medida de la fortaleza Acido-Base

Ecuación de Drago-Wayland

Calcular la entalpía de formación del aducto para la combinación del H^+ con H_2O y formas las sucesivas $H(H_2O)_n^+$ (n = 1, 2, 3, 4)

$$-\Delta \mathbf{H} = \mathbf{E}_{\mathbf{A}} \cdot \mathbf{E}_{\mathbf{B}} + \mathbf{C}_{\mathbf{A}} \cdot \mathbf{C}_{\mathbf{B}} + \mathbf{R}_{\mathbf{A}} \cdot \mathbf{T}_{\mathbf{B}}$$

$$H^+ + H_2O \longrightarrow H_3O^+$$

$$-\Delta H = 45.00 \cdot E_B + 13.03 \cdot C_B + 130.21 \cdot T_B$$

$$-\Delta H = 45.00 \cdot 2.28 + 13.03 \cdot 0.10 + 130.21 \cdot 0.43$$

$$-\Delta H = 159.89 \text{ kCal/mol}$$

Acid	E_A	C_A	R_A
H ⁺	45.00	13.03	130.21
Li ⁺	11.72	1.45	24.21
K^+	3.78	0.10	20.79
NH ₄ ⁺	4.31	4.31	18.52

Base	E_B	C_B	T_B
CH ₃ OH	1.80	0.65	0.70
C2H5OH	1.85	1.09	0.70
C ₆ H ₆	0.70	0.45	0.81
H ₂ S	0.04	1.56	1.13
HCN	1.19	0.10	0.90
H ₂ O	2.28	0.10	0.43

¿? Acid	E_A	C_A	R_A
I_2	0.50	2.00	
\longrightarrow H ₂ O	1.54	0.13	0.20
H_2S	0.77	1.46	0.56
HF	2.03	0.30	0.47
HCl	3.69	0.74	0.55

^{*} Douglas, B.; McDaniel, D.; Alexander, J., "Concepts and Models of Inorganic Chemistry", 3a Ed., John Wiley & Sons, 1994, pp 343.

^{*} Huheey, J. E., Keiter, R. L., Keiter, E. A., "Inorganic Chemistry: Principles of Structure and Reactivity", 4^a Ed., Harper Collins, 1993, pp 336.

QUIMICA GENERAL I

Química Inorgánica

Tema 4: Conceptos básicos de reactividad química

4.1.- Conceptos Acido-Base

Profesor: Rafael Aguado Bernal

Medida de la fortaleza Acido-Base

Ecuación de Drago-Wayland

Calcular la entalpía de formación del aducto para la combinación del H⁺ con H₂O y formas las sucesivas $H(H_2O)_n^+$ (n = 1, 2, 3, 4)

$$-\Delta \mathbf{H} = \mathbf{E}_{\mathbf{A}} \cdot \mathbf{E}_{\mathbf{B}} + \mathbf{C}_{\mathbf{A}} \cdot \mathbf{C}_{\mathbf{B}} + \mathbf{R}_{\mathbf{A}} \cdot \mathbf{T}_{\mathbf{B}}$$

$$H^+ + H_2O \longrightarrow H_3O^+$$

 $-\Delta H = 159.89 \text{ kCal/mol}$

$$H(H_2O)^+ + H_2O \longrightarrow H(H_2O)_2^+$$

 $-\Delta H = 39.65 \text{ kCal/mol}$

$$H(H_2O)_2^+ + H_2O \longrightarrow H(H_2O)_3^+$$

 $-\Delta H = 29.74 \text{ kCal/mol}$

$$H(H_2O)_3^+ + H_2O \longrightarrow H(H_2O)_4^+$$

- $\Delta H = 27.03 \text{ kCal/mol}$

Acid	E_A	C_A	R_A
H ⁺	45.00	13.03	130.21
Li ⁺	11.72	1.45	24.21
K +	3.78	0.10	20.79
NH ⁺	4.31	4.31	18.52
$(CH_3)_2NH_2^+$	3.21	0.70	20.72
$(CH_3)_3NH^+$	2.60	1.33	15.95
$(CH_3)_4N^+$	1.96	2.36	8.33
$C_5H_5NH^+$	1.81	1.33	21.72
H_3O^+	13.27	7.89	20.01
$(H_2O)_2H^+$	11.39	6.03	7.36
$(H_2O)_3H^+$	11.21	4.66	2.34
$(H_2O)_4H^+$	10.68	4.11	-3.25
CH+	10.70	12 61	55 00

Base	E_B	C_B	T_B
CH ₃ OH	1.80	0.65	0.70
C2H3OH	1.85	1.09	0.70
C ₆ H ₆	0.70	0.45	0.81
H ₂ S	0.04	1.56	1.13
HCN	1.19	0.10	0.90
H ₂ O	2.28	0.10	0.43

^{*} Douglas, B.; McDaniel, D.; Alexander, J., "Concepts and Models of Inorganic Chemistry", 3a Ed., John Wiley & Sons, 1994, pp 343.

^{*} Huheey, J. E., Keiter, R. L., Keiter, E. A., "Inorganic Chemistry: Principles of Structure and Reactivity", 4a Ed., Harper Collins, 1993, pp 336.

Profesor: Rafael Aguado Bernal

Medida de la fortaleza Acido-Base Ecuación de Drago-Wayland

Calcular la entalpía de formación del aducto para la combinación del H⁺ con H₂O y formas las sucesivas $H(H_2O)_n^+$ (n = 1, 2, 3, 4)

$$-\Delta \mathbf{H} = \mathbf{E}_{\mathbf{A}} {\cdot} \mathbf{E}_{\mathbf{B}} + \mathbf{C}_{\mathbf{A}} {\cdot} \mathbf{C}_{\mathbf{B}} + \mathbf{R}_{\mathbf{A}} {\cdot} \mathbf{T}_{\mathbf{B}}$$

$$H^+ + NH_3 \longrightarrow NH_4^+$$

 $-\Delta H = 203.45 \text{ kCal/mol}$

$$H_3O^+ + NH_3 \longrightarrow NH_4^+ + H_2O$$

 $-\Delta H = 57.95 \text{ kCal/mol}$

$$HCl + NH_3 \longrightarrow NH_4^+ + Cl^-$$

 $-\Delta H = 10.34 \text{ kCal/mol}$

Para casa

Vosotros hacéis los cálculos para los siguientes sistemas

Y si surge alguna duda ...

Preguntad!!!

^{*} Douglas, B.; McDaniel, D.; Alexander, J., "Concepts and Models of Inorganic Chemistry", 3a Ed., John Wiley & Sons, 1994, pp 343.

^{*} Huheey, J. E., Keiter, R. L., Keiter, E. A., "Inorganic Chemistry: Principles of Structure and Reactivity", 4ª Ed., Harper Collins, 1993, pp 336.