Research Article [Araştırma Makalesi

Yayın tarihi 30 Haziran, 2013 © TurkJBiochem.com [Published online 30 June, 2013]

Effect of econazole on Ca²⁺ signaling in human colorectal adenocarcinoma cells

[İnsan kolorektal adenokarsinom hücrelerindeki Ca²⁺ sinyal iletimi üzerine ekonazolün etkisi]*

Celia Carrillo, María del Mar Cavia, Sara R. Alonso-Torre

Department Of Nutrition And Bromatology, Faculty Of Sciences. University Of Burgos, Spain

Yazışma Adresi [Correspondence Address]

Dr. Sara R. Alonso-Torre

Pl. Misael Bañuelos s/n, 09001 Universidad de Burgos (Spain) Tel. +34947259003 Fax:. +34947258831 E-mail. salonso@ubu.es

* Translated by [Çeviri] Dr. Ebru Saatçi

Registered: 3 April 2012; Accepted: 14 January 2013 [Kayıt Tarihi : 3 Nisan 2012; Kabul Tarihi : 14 Ocak 2013] ABSTRACT

Introduction: Econazole, an azole compound widely used as an antifungal drug, is currently investigated for additional therapeutic effects. In fact, the antitumoral properties of econazole have been recently demonstrated, both in vivo and at the cellular level. However, the precise mechanism of action behind its effects is still unclear.

Aim: To examine the effect of econazole on intracellular Ca²⁺ signaling pathways in a human adenocarcinoma cell line.

Methods: $[Ca^{2+}]_i$ was measured in Fura 2-loaded HT29 cells by fluorescence. Fluorescence was recorded from 1ml aliquots of magnetically stirred HT29 cells using a Cary Eclipse Spectrophotometer (Varian Ltd., Madrid, Spain) with excitation wavelengths of 340 and 380 nm and emission at 510 nm.

Results: We have demonstrated that econazole has a dual effect on Ca^{2+} homeostasis. It caused a dose-dependent increase in $[Ca^{2+}]_i$. Both mobilization from thapsigargin-sensitive stores and extracellular Ca^{2+} influx contributed to the effect. A phospholipase C-dependent pathway proved to be activated by econazole. In addition, econazole greatly inhibited a physiological activation of store-operated Ca^{2+} entry.

Conclusion: This study provides further molecular mechanism of econazole suggesting that this drug may modify the physiology of human adenocarcinoma HT29 cell line. **Key Words:** Econazole, Ca²⁺ signaling, HT29 cells.

Conflict of Interest: The authors declare that there is no conflict of interest.

ÖZET

Giriş: Geniş kullanım alanına sahip, antifungal etkili Ekonazol bir azol bileşiğidir ve şimdilerde farklı terapotik etkileri çalışılmaktadır. Son zamanlarda ekonazolün antitümoral etkileri hem in vivo hem de hücresel düzeyin de gösterilmiştir. Bununla birlikte, etki mekanizması halen kesin belli değildir.

Amaç: Çalışmanın amacı İnsan adenokarsinom hücre kültürlerinde Ekonazolün hücre içi Ca²⁺ sinyal iletimi yollarındaki etkisinin belirlenmesidir.

Metot: Ca²⁺ konsantrasyonu Fura 2-yüklenmiş HT29 hücrelerinde floresan işaretlemeyle ölçülmüştür. Cary Eclipse spektrofotometre (Varian Ltd., Madrid, Spain) kullanılarak, 1 ml'lik karıştırılmış HT29 hücrelerinde, 340 ve 380 nm eksitasyon dalga boylarında ve 510 nm emisyonda fluoresans ölçülmüştür.

Bulgular: Ekonazolün Ca²⁺ homeostazı üzerine dual etkisi olduğu gösterilmiştir. Bu etki doza bağımlı Ca²⁺ konsatrasyonundaki artış sonucunda görülmüştür. Hem Tapsigargin-duyarlı depolardan hem de hücredışından Ca²⁺ girişi etkiye katkıda bulunmuştur. Fosfolipaz C-bağımlı bir yolağın ekonazol tarafından aktive edildiği ispatlanmıştır. Ek olarak, ekonazolün Ca²⁺'un depolanmak üzere fizyolojik aktivasyonunu yüksek oranda inhibe ettiği gösterilmiştir.

Sonuç: Bu çalışma, Ekonazolün insan adenokarsinom HT29 hücre kültürlerinin fizyolojisini çeşitli moleküler mekanizmalarla etkilediğini göstermiştir.

Anahtar Kelimeler: Ekonazol, Ca²⁺ sinyal iletimi, HT29 hücre kültürü.

[3] | Çıkar Çatışması: Yazarların çıkar çatışması yoktur.

Introduction

The discovery of the antifungal activity of azole compounds represented an important therapeutic advance [1-5]. Within them, Econazole, widely used as an antifungal drug [6], is currently further investigated for additional therapeutic effects.

In fact, both econazole and ketoconazole (1 nM - 1 μ M) decreased human breast cancer MCF-7 cell proliferation in a time and dose-dependent manner [7]. In addition, tumor growth was slightly delayed in liposomal econazole-treated mice [8]. Moreover, significant anti-tumorigenesis effect was demonstrated in vivo by treating nude mice bearing COLO 205 tumor xenograpfts with econazole 50 mg/kg intraperitoneally [9] and the same researchers also reported that lower doses of econazole (5 - 20 μ M) arrested human colon cancer cells at G0/G1 phase of the cell cycle.

Different molecular mechanisms stay behind the clinical effects of drugs. It is well established that Ca²⁺ is among the major intracellular factors involved in the signaling transduction pathways evoking cell growth and proliferation, and other key processes such as gene expression [10,11]. When calcium signaling is stimulated in a cell, Ca²⁺ enters the cytoplasm from one of two general sources: it is released from intracellular stores, or it enters the cell across the plasma membrane. Both processes often occur either simultaneously or sequentially [12]. Within Ca²⁺ mechanisms contributing to the increases in intracellular Ca2+ concentration $([Ca^{2+}]_i)$, particular attention has been paid to the role of Ca²⁺ entry through store-operated channels (SOC) [13]. Thus, store-operated Ca²⁺ entry (SOCE), a refilling process triggered by depletion of Ca²⁺ stores, has been involved in cell signaling occurring in non-excitable cells to evoke different cell processes including gene regulation and cell growth [14]. Entry in cell cycle is preceded by SOC activation [15] and SOCE inhibition by different means abolishes tumor cell proliferation [16-19]. In addition, alterations in intracellular Ca²⁺ homeostasis are commonly observed during apoptosis [20,21] and it has been demonstrated that the depletion of the endoplasmic reticulum Ca²⁺ stores can directly induce apoptosis [22].

Although several reports have already suggested the antitumor effect of econazole, its molecular mechanism of action is still unclear. Being calcium signaling an essential tool for the development of different cellular responses as cell proliferation or apoptosis [23-26] and being colorectal cancer one of the commonest tumors in the Westernized world [27], the present study aims to investigate the role of econazole on Ca^{2+} signaling in a human adenocarcinoma cell line. Previous reports showed the effect of econazole on Ca^{2+} movements in different cell lines [28-30], but our paper is the first to investigate the role of econazole on Ca^{2+} signaling in HT29 cells.

Materials and Methods

HT29 cells were kindly donated by C. Villalobos (CSIC, Valladolid). Fura-2/AM was purchased from Fluka. Carbachol, econazole, PMA, propanolol, staurosporine and thapsigargin from Sigma. U73122 and nifedipine from Calbiochem. Reagents for cell culture were purchased from GIBCO.

The human colorectal adenocarcinoma cell line HT29 was maintained in standard DMEM, (complemented with 10% fetal bovine serum (FBS), 1% peniciline/ streptomicine and 1% glutamine) and kept in an incubator (37°C, 10% CO, humidified atmosphere).

Cells were propagated in 75 cm² culture flasks, detached by trypsin treatment, washed in culture medium and loaded with 4 μ M of the fluorescence dye Fura-2/ AM (a ratiometricfluorescent dye which binds to free intracellularcalcium) for 60 min at room temperature in an standard solution (Ca²⁺-standard medium containing (mM): NaCl, 145; KCl, 5; MgCl₂, 1; CaCl₂, 1; glucose,

10; HEPES, 10 (pH 7.4)). Fluorescence was recorded from 1ml aliquots of magnetically stirred HT29 cells (1.5x10⁶ C/mL) at 37°C using a Cary Eclipse Spectrophotometer (Varian Ltd., Madrid, Spain) with excitation wavelengths of 340 and 380 nm and emission at 510 nm. When experiments were performed in a Ca²⁺free medium, extracellular Ca²⁺ was chelated with 5 mM EGTA-Tris addition. Changes in $[Ca^{2+}]_i$ were monitored using the Fura-2 fluorescence ratio (340/380). The $[Ca^{2+}]_i$ was calculated using the method of Grynkiewicz et al. [31]. Increases in $[Ca2+]_i$ were expressed as nM (mean ± SD).

*Mn*²⁺ *measurements*

 Mn^{2+} measurements were performed as previously described by our group in HT29 and other cell types [32,33]. Briefly, Mn^{2+} uptake was monitored as a rate of quenching of Fura-2 fluorescence measured at the Ca²⁺insensitive wavelengths (excitation 360 nm and emission 510 nm). The rate of the fluorescence decrease provides a relative measure of the divalent cations permeability. Analysis of statistical significance was performed using

Analysis of statistical significance was performed using Statgraphics Centurion XVI. The data are represented as mean \pm SD for each group. One-way ANOVA was used to analyse the statistical significance between mean values followed by a least-significant difference (LSD) test. p < 0.05 was taken as the minimum level of significance.

Results

Econazole increased $[Ca^{2+}]_i$ in a concentration-dependent manner in the presence of extracellular Ca^{2+} in HT29 cells. Fig. 1 shows the recording of 4 different concentrations (μ M) 0.1, 1, 2.5, 10 of econazole. Increasing the concentration above 1 μ M clearly induce an $[Ca^{2+}]_i$ increase, reaching the maximum net value at the

higher concentrations. When 20 μ M was tested no bigger [Ca²⁺]_i increase was observed (data not shown).

We conducted experiments in the absence of extracellular Ca²⁺ to assess whether an influx of extracellular Ca²⁺ or mobilization of Ca²⁺ from the intracellular Dools may contribute to econazole-induced [Ca²⁺]_i rises. Extracellular Ca²⁺ was chelated by addition of EGTA-Tris to the medium. Assuming no extracellular Ca²⁺ was allowed to enter, any increase in [Ca²⁺]_i must arise from Ca²⁺ release from the stores. Statistical differences (p < 0.05) were found when comparing econazole maximum peak in both media. Fig. 2 shows that econazole response in a Ca²⁺-free medium is greatly curtailed if compared with the one observed in a Ca²⁺ containing medium. Thus, both extracellular Ca²⁺ influx and intracellular Ca²⁺ release were induced by econazole, with the former one taking a dominant role.

We performed experiments to further investigate the regulation of econazole-induced Ca²⁺ signal. Nifedipine (10 μ M), staurosporine (STA) (1 μ M) and propanolol (150 μ M) did not alter 10 μ M econazole-induced Ca²⁺ movements in a Ca²⁺-containing medium. Nevertheless, Ni²⁺ (1 mM) inhibited econazole-induced [Ca²⁺]_i rise in HT29 cells. Statistical differences (p < 0.05) were found when comparing econazole response in control cells and Ni²⁺-treated cells (Fig. 3).

In order to elucidate the origin of the calcium recruited by econazole, we used thapsigargin (Tg). Tg without acting on IP₃ receptors, increases cytosolic Ca²⁺ by inhibiting the Ca²⁺-ATPase present on the endoplasmic reticulum [34]. Application of 400 nM Tg, in a Ca²⁺-free medium, caused an [Ca²⁺], increase that comprised an initial rise and a gradual decay towards baseline; after depleting the endoplasmic reticulum Ca²⁺ store with Tg, addition of 10 µM econazole did not induce any Ca²⁺ increase, thus suggesting that the internal Ca²⁺ source for the econazole response is the Tg-sensitive endoplasmic reticulum store (Fig. 4). Moreover, addition of 400 nM Tg after treating cells with econazole, also failed to induce a $[Ca^{2+}]$ rise (data not shown). This signal most likely reflected endoplasmic reticulum Ca2+ release induced by this drug.

Once shown that econazole recruited Ca^{2+} from intracellular stores, we aimed to evaluate whether econazole evoked increases in $[Ca^{2+}]_i$ via the production of inositol 1,4,5-triphosphate (IP₃). We used U73122, a PLC inhibitor, to block formation of IP₃ [35-37]. In cells treated with U73122 econazole-induced $[Ca^{2+}]_i$ was significantly curtailed (Fig. 5).

Econazole is generally recognized as an inhibitor of SOCE in a number of cells [38-40], so we asked next whether it was able to inhibit SOCE in human colorectal adenocarcinoma cells.

Carbachol (Cch) activates M_3 muscarinic receptors in HT29 cells provoking a biphasic $[Ca^{2+}]_i$ increase, a peak due to the transient release from intracellular stores

followed by a plateau due to sustained Ca²⁺ entry via store-operated channels (SOC) [41]. Thus, we were tempted to assess whether econazole inhibited SOCE induced by a physiological stimulation with Cch in HT29 cells. Econazole inhibited $[Ca^{2+}]_i$ increase induced by carbachol in a dose-dependent manner. The maximum effect was observed when 10 μ M econazole was tested (Fig. 6). Both 0.1 and 1 μ M of econazole failed to induce any inhibitory effect (data not shown).

We developed experiments with Mn^{2+} , used as a tracer for Ca^{2+} entry [42], in order to establish whether the econazole-induced decrease in $[Ca^{2+}]_i$ was actually due to an inhibition of Ca^{2+} influx. We used Tg to induce SOCE. Fig. 7 shows how econazole inhibited Mn^{2+} influx in cells treated with Tg.

Since it has been previously demonstrated the SOCEinhibitory properties of phorbol 12-myristate 13-acetate (PMA), in several cell types [43,44], we tested the effect of such a phorbol in HT29 cells. Fig. 8 shows that activation of protein kinase C (PKC) inhibited $[Ca^{2+}]_i$ rise induced by Cch in HT29 cells. However, inhibition of PKC with STA, did not affect the change in $[Ca^{2+}]_i$ evoked by econazole. Thus, the inhibition of the Cchevoked $[Ca^{2+}]_i$ transient by econazole was apparently PKC-independent.

Discussion

The main finding of the present report is that econazole has several effects on Ca^{2+} movements in HT29 cells. Both extracellular Ca^{2+} entry and intracellular Ca^{2+} release from the stores are affected by econazole.

Our data suggest that econazole induced a dosedependent increase on [Ca2+], Concentrations above 1 μ M greatly induced an [Ca²⁺], rise, giving the maximum peak the higher concentrations tested (10-20 µM). Similar results were previously reported in different cell lines [28-30,45]. After 10 µM econazole stimulation, there was a pronounce initial peak followed by a rapid decline to near pre-stimulation level of $[Ca^{2+}]$. Both intracellular Ca²⁺ release from the stores and extracellular Ca^{2+} influx contributed to the $[Ca^{2+}]_i$ rise, which is in agreement with results previously stated [28-30]. Calcium entry was greatly curtailed in cells treated with Ni²⁺, but it remains to be uncertain the type of channels implicated, as nifedipine, an L-type channels antagonist, failed to inhibit the entry, in clear connection with previous reports [28,29]. Moreover, a phospholipase D (PLD) pathway did not seem to be implicated in econazole response, as cells treated with propanolol failed to abolish the econazole response.

Concerning the stores implicated in the econazoleinduced Ca^{2+} release, thapsigargin-sensitive stores proved to be econazole's target, as demonstrated for different cell lines [28,29]. U73122, a pharmacological inhibitor of PLC, significantly abolished the econazoleinduced rise in $[Ca^{2+}]_{i}$. Activation of PLC produces

Figure 1. Effect of econazole (Eco) on $[Ca^{2+}]_i$ in HT29 cells. The experiments were performed in a Ca²⁺-containing medium (1 mM). Eco (0.1-10 μ M) was added to the cells at the time indicated by the arrow. The curves, represented as Ratio (340/380), show the single traces of observations which were reproduced several times independently (n≥6). Data in histograms represented as mean (SD) values of the increases in $[Ca^{2+}]_i$ (nM) were analyzed by employing LSD test of significance. The calibration of the experiment was performed as described in Material and Methods.

Figure 2. Effect of 10 μ M econazole on $[Ca^{2+}]_i$ in a Ca^{2+} -free medium in HT29 cells. Data in histograms are represented as mean (SD) of three independent experiments and analyzed by employing LSD test of significance (p < 0.05). A comparison of the effects of econazole in a Ca^{2+} -free medium and in a "control medium" (containing 1 mM Ca^{2+}) is shown.

Figure 3. Effect of modulators of protein kinases C (PKC) and blockers of Ca²⁺ channels on econazole-induced $[Ca^{2+}]_i$ rise. Experiments were performed in Ca²⁺ containing medium. Nifedipine (10 µM), Ni²⁺ (1 mM), propanolol (150 µM) and staurosporine (STA) (1 µM) were applied 10 minutes before addition of 10 µM econazole. Data in histograms are represented as mean (SD) of three independent experiments and analyzed by employing LSD test of significance (**p*< 0.05).

(08E/0FE) (08E

Figure 4. Effect of econazole (Eco) on thapsigargin (Tg)-sensitive stores. The experiments were performed in a Ca²⁺-free medium. 400 nM Tg and 10 μ M Eco were added at the time indicated by the arrows. The curves, represented as Ratio (340/380), show the single traces of observations which were reproduced several times independently (n \geq 6).

Figure 5. Effect of econazole (Eco) on the increases in $[Ca^{2+}]_i$ in U73122 treated cells. Before adding econazole (10 μ M), cells were incubated during 5 minutes with 3 μ M U73122. U73122(-) represents non-treated cells. U73122(+) represents U73122-treated cells. Data in histograms represented as mean (SD) values of the increases in $[Ca^{2+}]_i$ (nM) were analyzed by employing LSD test of significance. The calibration of the experiment was performed as described in Material and Methods.

Figure 6. Effect of econazole (Eco) on carbachol (Cch)-induced SOCE. Experiments were performed in a Ca²⁺-containing medium. 100 μ M Cch and 10 μ M Eco were added when indicated by the arrows. The curves, represented as Ratio (340/380), show the single traces of observations which were reproduced several times independently (n≥6). Data in histograms represented as mean (SD) values of the inhibition of the increases in [Ca²⁺]_i (%) were analyzed by employing LSD test of significance. The calibration of the experiment was performed as described in Material and Methods.

Figure 7. Effect of econazole (Eco) on Mn^{2+} entry in Carbachol (Cch)treated cells. "Control line" represents cells treated with 100 μ M Cch. •Eco line represents cells in which SOCE has been induced by Cch, and immediately after Eco (10 μ M) was added to the cuvette. For Mn^{2+} entry measurements, 1 mM MnCl₂ was added and the decrease of the fluorescence excited at 360 nm was followed. Readings have been normalized to 100% at the time of Mn^{2+} addition. The curves show the single traces of observations which were reproduced several times independently (n \geq 6). Data in histograms represented as mean (SD) values of inhibition of Mn^{2+} entry (%), were analyzed by employing LSD test of significance.

 IP_3 and diaylglycerol, which activates PKC. However, econazole-induced Ca²⁺ increase was not inhibited by treating the cells with staurosporine, a PKC inhibitor, thus suggesting that the $[Ca^{2+}]_i$ rise observed after treating the cells with econazole was apparently not dependent on PKC activation.

Because Ca^{2+} overloading is known to initiate processes leading to cell death [46], our results may suggest a molecular mechanism of action for the reported apoptotic properties of econazole [9].

Econazole has been shown to inhibit store-operated Ca^{2+} entry in several cell types, so we explored the effect of econazole in HT29 cells. In fact, our results showed that econazole greatly inhibited SOCE induced by physiological stimulation with carbachol. In agreement with previous studies for several cell lines [47,48], we have demonstrated that activation of PKC, using phorbol esters, produces inhibition of agonist-induced [Ca²⁺] rise in HT29 cells. However, such a pathway was not involved in the inhibitor effect induced by econazole, as cells treated with staurosporine, failed to prevent such an inhibition. The lack of further evidence let us support those studies suggesting a link between a wide range of cytochrome P450 inhibitors and their role as blockers of SOCE [49,50]. However, other studies disagree on this hypothesis [38,40,51] reporting that other imidazole compounds failed to have such an effect. Moreover, previous reports [52] showed that adding BSA removed the inhibitory effect of econazole in Ehrlich ascites tumour cells. In this context, it has been also demostrated that econazole did not inhibit I_{CRAC} (Ca²⁺ release-activated Ca²⁺ channels) when injected intracellularly but did so when presented externally by patch clamp pipette [53]. But whatever the mechanism

Figure 8. Comparison of the effects of staurosporine (STA) on the inhibition of SOCE induced by either PMA or econazole (Eco) in HT29 cells. Carbachol (Cch) (100 μ M) was used to induce SOCE in a Ca²⁺-containing medium. PMA and Eco were added at 0.1 μ M and 10 μ M, respectively. Data in histograms, represented as mean (SD) values of inhibition of the increases in [Ca²⁺]_i (%), were analyzed by employing LSD test of significance (n≥6). NS, no significant differences.

of Ca²⁺ entry inhibition is, inhibition of SOCE has been shown to block cell proliferation in tumour cells [17,18]. If SOC-E is essential for cell proliferation then it follows that drugs interfering with such a pathway may prevent cell proliferation via SOC-inactivation. Núñez et al. reported SOCE-inhibition as a novel mechanism that may contribute to explain the reported anti-proliferative and anti-tumoral actions of aspirin and dietary salicylates, which is also in agreement with several groups reporting that the inhibition of SOCE contributes to the anti-proliferative effect of drugs in human colon cancer cells [17-19]. In this sense, our results could be even connected with those previously stated demonstrating that low doses of econazole induce growth inhibition in colon cancer cells trough G0/G1 cell cycle arrest [9].

Econazole is widely used in different clinical preparations, but its effects on HT29 cells had not been previously examined. Our results show that econazole significantly alters Ca^{2+} movements in these cells. Apart from its role as a SOCE blocker, it induces dose-dependent increases in $[Ca^{2+}]_i$ both by releasing Ca^{2+} from the thapsigarginsentitive stores and by inducing extracellular calcium influx. As Ca^{2+} entry into the cytoplasm influences the expression and activity of intracellular kinases and gene expression [23-26], we conclude that econazole may modify the physiology of human adenocarcinoma HT29 cells.

Acknowledgements

This study was financed by the "Junta de Castilla y León" (project reference number BU001A09). C. Carrillo was supported by M.E.C. fellowship. We thank Gonzalo Moreno for his technical support.

Conflict of Interest: The authors declare that there is no conflict of interest.

References

- Benfield P, Clissold SP.Sulconazole. A review of its antimicrobial activity and therapeutic use in superficial dermatomycoses. Drugs, 1988, 35 (2):143-153
- [2] Clissold SP, Heel RC.Tioconazole. A review of its antimicrobial activity and therapeutic use in superficial mycoses. Drugs, 1986, 31 (1):29-51
- [3] Haria M, Bryson HM, Goa KL.Itraconazole. A reappraisal of its pharmacological properties and therapeutic use in the management of superficial fungal infections. Drugs, 1996, 51 (4):585-620
- [4] Lackner TE, Clissold SP.Bifonazole. A review of its antimicrobial activity and therapeutic use in superficial mycoses. Drugs, 1989, 38 (2):204-225
- [5] Veraldi S, Milani R.Topical fenticonazole in dermatology and gynaecology: current role in therapy. Drugs, 2008, 68 (15):2183-2194
- [6] Heel RC, Brogden RN, Speight TM *et al*. Econazole: a review of its antifungal activity and therapeutic efficacy. Drugs, 1978, 16 (3):177-201
- [7] Najid A, Ratinaud MH.Comparative studies of steroidogenesis inhibitors (econazole, ketoconazole) on human breast cancer MCF-7 cell proliferation by growth experiments, thymidine incorporation and flow cytometric DNA analysis. Tumori, 1991, 77 (5):385-390
- [8] Cogswell S, Berger S, Waterhouse D et al. A parenteral econazole formulation using a novel micelle-to-liposome transfer method: in vitro characterization and tumor growth delay in a breast cancer xenograft model. Pharm Res, 2006, 23 (11):2575-2585
- [9] Ho YS, Wu CH, Chou HM et al.Molecular mechanisms of econazole-induced toxicity on human colon cancer cells: G0/G1 cell cycle arrest and caspase 8-independent apoptotic signaling pathways. Food Chem Toxicol, 2005, 43 (10):1483-1495
- [10] Berridge MJ.Calcium signalling and cell proliferation. Bioessays, 1995, 17 (6):491-500
- [11] Kahl CR, Means AR.Regulation of cell cycle progression by calcium/calmodulin-dependent pathways. Endocr Rev, 2003, 24 (6):719-736
- [12] Putney JW.Capacitative calcium entry: from concept to molecules. Immunol Rev, 2009, 231 (1):10-22
- [13] Parekh AB, Putney JW, Jr.Store-operated calcium channels. Physiol Rev, 2005, 85 (2):757-810
- [14] Parekh AB, Penner R.Store depletion and calcium influx. Physiol Rev, 1997, 77 (4):901-930
- [15] Sugioka M, Yamashita M.Calcium signaling to nucleus via store-operated system during cell cycle in retinal neuroepithelium. Neurosci Res, 2003, 45 (4):447-458
- [16] Golovina VA, Platoshyn O, Bailey CL *et al*.Upregulated TRP and enhanced capacitative Ca²⁺ entry in human pulmonary artery myocytes during proliferation. Am J Physiol Heart Circ Physiol, 2001, 280 (2):H746-755
- [17] Weiss H, Amberger A, Widschwendter M *et al.*Inhibition of store-operated calcium entry contributes to the anti-proliferative effect of non-steroidal anti-inflammatory drugs in human colon cancer cells. Int J Cancer, 2001, 92 (6):877-882
- [18] Zitt C, Strauss B, Schwarz EC *et al*.Potent inhibition of Ca²⁺ release-activated Ca²⁺ channels and T-lymphocyte activation by the pyrazole derivative BTP₂. J Biol Chem, 2004, 279 (13):12427-12437
- [19] Núñez L, Valero RA, Senovilla L et al.Cell proliferation

depends on mitochondrial Ca²⁺ uptake: inhibition by salicylate. J Physiol, 2006, 571:57-73

- [20] McConkey DJ, Orrenius S.The role of calcium in the regulation of apoptosis. Biochem Biophys Res Commun, 1997, 239 (2):357-366
- [21] Nicotera P, Orrenius S.The role of calcium in apoptosis. Cell Calcium, 1998, 23 (2-3):173-180
- [22] Pan Z, Damron D, Nieminen AL *et al*.Depletion of intracellular Ca²⁺ by caffeine and ryanodine induces apoptosis of chinese hamster ovary cells transfected with ryanodine receptor. J Biol Chem, 2000, 275 (26):19978-19984
- [23] Brostrom MA, Brostrom CO.Calcium dynamics and endoplasmic reticular function in the regulation of protein synthesis: implications for cell growth and adaptability. Cell Calcium, 2003, 34 (4-5):345-363
- [24] Bootman MD, Berridge MJ, Roderick HL.Calcium signalling: more messengers, more channels, more complexity. Curr Biol, 2002, 12 (16):R563-565
- [25] Berridge MJ, Bootman MD, Roderick HL.Calcium signalling: dynamics, homeostasis and remodelling. Nat Rev Mol Cell Biol, 2003, 4 (7):517-529
- [26] Berridge MJ.Calcium hypothesis of Alzheimer's disease. Pflugers Arch, 2009, 459 (3):441-449
- [27] Holt PR, Kozuch P, Mewar S.Colon cancer and the elderly: from screening to treatment in management of GI disease in the elderly. Best Pract Res Clin Gastroenterol, 2009, 23 (6):889-907
- [28] Chien JM, Huang CC, Cheng HH *et al*.Econazole-evoked [Ca²⁺], rise and non-Ca²⁺-triggered cell death in rabbit corneal epithelial cells (SIRC). J Recept Signal Transduct Res, 2008, 28 (6):567-579
- [29] Huang JK, Liu CS, Chou CT *et al*.Effects of econazole on Ca²⁺ levels in and the growth of human prostate cancer PC3 cells. Clin Exp Pharmacol Physiol, 2005, 32 (9):735-741
- [30] Kuo DH, Liu LM, Chen HW *et al*.Econazole-induced Ca²⁺ fluxes and apoptosis in human oral cancer cells. Drug Development Research, 2010, 71 (4):240-248
- [31] Grynkiewicz G, Poenie M, Tsien RY.A new generation of Ca2+ indicators with greatly improved fluorescence properties. J Biol Chem, 1985, 260 (6):3440-3450.
- [32] Carrillo C, Cavia MM, Alonso-Torre SR.Oleic Acid Versus Linoleic and α-Linolenic Acid. Different Effects on Ca2+ Signaling in Rat Thymocytes. Cell Physiol Biochem, 2011, 27:373-380.
- [33] Carrillo C, Cavia MM, Alonso-Torre SR.Oleic acid inhibits store-operated calcium entry in human colorectal adenocarcinoma cells. Eur J Nutr, 2012, 51(6):677-84
- [34] Thastrup O, Cullen PJ, Drobak BK *et al*.Thapsigargin, a tumor promoter, discharges intracellular Ca²⁺ stores by specific inhibition of the endoplasmic reticulum Ca²⁺-ATPase. Proc Natl Acad Sci USA, 1990, 87 (7):2466-2470
- [35] Smallridge RC, Kiang JG, Gist ID *et al*.U-73122, an aminosteroid phospholipase C antagonist, noncompetitively inhibits thyrotropin-releasing hormone effects in GH₃ rat pituitary cells. Endocrinology, 1992, 131 (4):1883-1888
- [36] Yule DI, Williams JA.U73122 inhibits Ca²⁺ oscillations in response to cholecystokinin and carbachol but not to JMV-180 in rat pancreatic acinar cells. J Biol Chem, 1992, 267 (20):13830-13835
- [37] Thompson AK, Mostafapour SP, Denlinger LC *et al*. The aminosteroid U-73122 inhibits muscarinic receptor sequestration and phosphoinositide hydrolysis in SK-N-SH neuroblastoma cells. A role for Gp in receptor compartmentation. J Biol Chem, 1991, 266 (35):23856-23862
- [38] Koch BD, Faurot GF, Kopanitsa MV et al. Pharmacology of a

Ca²⁺-influx pathway activated by emptying the intracellular Ca²⁺ stores in HL-60 cells: evidence that a cytochrome P-450 is not involved. Biochem J, 1994, 302 (Pt 1):187-190

- [39] Mason MJ, Mayer B, Hymel LJ.Inhibition of Ca²⁺ transport pathways in thymic lymphocytes by econazole, miconazole, and SKF 96365. Am J Physiol, 1993, 264 (3 Pt 1):C654-662
- [40] Vostal JG, Fratantoni JC.Econazole inhibits thapsigargin-induced platelet calcium influx by mechanisms other than cytochrome P-450 inhibition. Biochem J, 1993, 295:525-529
- [41] Kerst G, Fischer KG, Normann C et al.Ca²⁺ influx induced by store release and cytosolic Ca²⁺ chelation in HT29 colonic carcinoma cells. Pflugers Arch, 1995, 430 (5):653-665
- [42] Alonso MT, Sanchez A, Garcia-Sancho J.Monitoring of the activation of receptor-operated calcium channels in human platelets. Biochem Biophys Res Commun, 1989, 162 (1):24-29
- [43] Alonso-Torre SR, Garcia-Sancho J.Arachidonic acid inhibits capacitative calcium entry in rat thymocytes and human neutrophils. Biochim Biophys Acta, 1997, 1328 (2):207-213
- [44] Tornquist K.Modulatory effect of protein kinase C on thapsigargin-induced calcium entry in thyroid FRTL-5 cells. Biochem J, 1993, 290 443-447
- [45] Jan CR, Ho CM, Wu SN *et al*.Multiple effects of econazole on calcium signaling: depletion of thapsigargin-sensitive calcium store, activation of extracellular calcium influx, and inhibition of capacitative calcium entry. Biochim Biophys Acta, 1999, 1448 (3):533-542
- [46] Annunziato L, Amoroso S, Pannaccione A *et al*. Apoptosis induced in neuronal cells by oxidative stress: role played by caspases and intracellular calcium ions. Toxicol Lett, 2003, 139 (2-3):125-133
- [47] Montero M, Garcia-Sancho J, Alvarez J.Inhibition of the calcium store-operated calcium entry pathway by chemotactic peptide and by phorbol ester develops gradually and independently along differentiation of HL60 cells. J Biol Chem, 1993, 268 (36):26911-26919
- [48] Montero M, Garcia-Sancho J, Alvarez J.Transient inhibition by chemotactic peptide of a store-operated Ca^{2+} entry pathway in human neutrophils. J Biol Chem, 1993, 268 (18):13055-13061
- [49] Alvarez J, Montero M, Garcia-Sancho J.Cytochrome P-450 may link intracellular Ca²⁺ stores with plasma membrane Ca²⁺ influx. Biochem J, 1991, 274 193-197
- [50] Montero M, Garcia-Sancho J, Alvarez J.Comparative effects of cytochrome P-450 inhibitors on Ca²⁺ and Mn²⁺ entry induced by agonists or by emptying the Ca²⁺ stores of human neutrophils. Biochim Biophys Acta, 1993, 1177 (2):127-133
- [51] Sargeant P, Farndale RW, Sage SO.The imidazole antimycotics econazole and miconazole reduce agonist-evoked protein-tyrosine phosphorylation and evoke membrane depolarisation in human platelets: cautions for their use in studying Ca²⁺ signalling pathways. Cell Calcium, 1994, 16 (5):413-418
- [52] Gamberucci A, Fulceri R, Benedetti A *et al*.On the mechanism of action of econazole, the capacitative calcium inflow blocker. Biochem Biophys Res Commun, 1998, 248 (1):75-77
- [53] Christian EP, Spence KT, Togo JA *et al*.Extracellular site for econazole-mediated block of Ca²⁺ release-activated Ca²⁺ current (I_{erre}) in T lymphocytes. Br J Pharmacol, 1996, 119 (4):647-654