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The quantum vacuum interaction energy between a pair of semitransparent two- 
dimensional plates r epr esented by Dirac delta potentials and its first deri vati v e, embedded 

in the topological background of a sine-Gordon kink, is studied through an extension of 
the TGTG -formula (de v elopped by O. Kenneth and I. Klich in the scattering approach). 
Quantum vacuum oscillations around the sine-Gordon kink solutions are interpreted as a 

quantum scalar field theory in the spacetime of a domain wall. Mor eover, the r elation be- 
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1. Introduction 

The vacuum state of an arbitrary quantum field theory (QFT) is the state of minimum energy
of the Hamiltonian. This state is not empty but contains electromagnetic waves and infinite
pairs of virtual short-li v ed particles and antiparticles [ 1 ]. These pairs annihilate each other
very quickly in accordance with the Heisenberg energy–time uncertainty principle. Ne v erthe-
less, when some objects are introduced into the space, sometimes nearby particles collide with
them and get reflected in such a way that they do not combine again with their antipaticles.
Quantum forces may thus appear in the system as a result of the presence of these frontiers.
The physical properties of the vacuum state and the vacuum ener gy sho w a strong depen-
dence on the type of boundaries. One of the most important boundary phenomena is the
Casimir effect [ 2 ], in which the presence of two parallel, uncharged and conducting plates
restricts the modes of the fluctuations of the electromagnetic field between them. Vacuum
polarization occurs and a finite force between both plates appears. This effect, predicted in
1948 by H.B.G Casimir, was experimentally measured for the first time in 1958 by M.J. Spar-
naay [ 3 ]. Since then, many studies have been performed for bodies with different geometries
and materials [ 4 , 5 ]. This effect has numerous applications in nanoelectronic devices [ 6 , 7 ], in
absorption phenomena in carbon nanotubes [ 8 ], and in inflation processes [ 9 ], among many
others. 

A crucial point of the two-plate theory is that the vacuum energy is ultraviolet-di v ergent. It
needs to be regularized and renormalized in order to obtain the finite contribution related to
© The Author(s) 2024. Published by Oxford University Press on behalf of the Physical Society of Japan. This is an Open Access article distributed under the 
terms of the Creati v e Commons Attribution License ( https://creati v ecommons.org/licenses/by/4.0/ ), which permits unrestricted reuse, distribution, and 
reproduction in any medium, provided the original work is properly cited. 
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the interaction betwen objects. There are se v eral approaches to achie v e this goal. For instance,
it is worth mentioning: 

� Computing the 00-component of the energy-momentum tensor in terms of Green’s function 

and the scattering data and then subtracting the first terms in its Born expansion [ 10 ], 
� calculating the transfer operator to a ppl y the TGTG -formula [ 11 ], and 

� using zeta functions, complex integrals and heat traces [ 12–14 ]. 

The TGTG -formula allows one to compute the quantum vacuum interaction energy between
two separated objects r epr esented by a smooth classical background in a flat spacetime. It is a
formalism based on tr ansition oper ators (more precisely, the so-called Lippmann–Schwinger 
T -operator) and Green’s functions. It has been used, for instance, to compute the vacuum in-
teraction energy between two sine-Gordon kinks [ 15 ], and between two plates mimicked by δδ′ 

potentials [ 16 ], like the ones that will be discussed in the following sections. The major advan-
tage of using the TGTG -formalism instead of the other ones aforementioned is that only the
scattering problem for the background potential together with one single object is necessary
to compute the vacuum interaction energy between the pair of bodies. This could be a crucial
factor whene v er the scattering prob lem for the complete potential with two objects in a classi-
cal background is hard to solve. Furthermore, using the TGTG -form ula significantl y reduces
the complexity of the analytical and numerical computation. For both these reasons, it is the
method that is used in the present work. 

The main objecti v e here is to find a generalization of the TGTG -formula to study the quantum
vacuum interaction energy between a pair of two-dimensional homogeneous pla tes loca ted 

1 a t
z = a , b , and immersed in a weak curved backgr ound potential. This backgr ound is constituted
by a sine-Gordon kink centred at the origin of the direction orthogonal to the plates. Thus, the
background potential will be the Pöschl–Teller (PT) one: 

V PT (z ) = −2 sech 

2 z = − 2 

cosh 

2 z 
= − 8 

( e z + e −z ) 2 
. (1) 

It models the propagation of mesons moving in a sine-Gordon kink background [ 17–20 ]. No-
tice that kinks in 1 + 1 dimensions can be embedded into a 3 + 1 dimensional theory as solu-
tions which are independent of all but one spatial direction. These types of solutions with finite
energy per unit area are known as domain walls [ 18 ]. They were produced in the early stages
of the Uni v erse by the spontaneous br eaking of discr ete symmetries [ 21 ]. The propagation of 
mesons around this topological defect will be the focus in this article. 

Sine-Gordon kinks have attracted much attention to-date. Pre vious wor ks concerning the 00-
component of the energy momentum tensor T μν in a system with a kink in the real line, and
the scattering problem of two delta potentials symetrically placed around a kink can be found
in Refs. [ 20 , 22 ]. Moreov er, the one-soliton sine-Gor don solution can be used to construct (lo-
cally) a metric describing the curved spacetime of a black hole [ 23 ], to generate 4D Einstein
gravity solutions [ 24 ], and to pro vide branew orld scenarios [ 25 ]. In this last case, the scalar
field acts as a source of gravity around the brane. So far, much is made of quantum forces
in different curved backgrounds and in gravitational contexts by Saharian [ 26 ], Bordag [ 27 ],
Milton and Fulling [ 28 ], and Elizalde and Odintsov [ 29 ], among others. There are relevant dif-
1 The position four-vector will be expressed from now on as x 

μ = (t, � x ‖ , z ) ∈ R 

1 , 3 . Notice that � x ‖ ∈ R 

2 . 
Likewise, the four-momentum will be K 

μ = (E, � k ‖ , k) . Here, z and k are the position and the momentum 

coordinates in the direction orthogonal to the surfaces of the plates. 

2/23 
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ferences between studying QFT for flat metrics and doing it for those that characterize curved
manifolds. One of the fundamental problems in curved spaces [ 30 , 31 ] is that only for globally
hyperbolic curved spacetimes endowed with a global temporal Killing vector is the spacetime a
fiber bundle with a set of spatial slices or Cauchy surfaces which e volv e in time. For each fixed
value of the temporal coordinate, one could solve the spectra of the Laplacian–Beltrami oper-
ator in the spatial slice as done for the Minko wski metric. Ho we v er , in another , more general
case, if the curved spacetime is such that the fiber bundle does not allow an interpretation in
terms of particle spectra independent of the observer, talking about scattering is ambiguous.
Consequently, computing the quantum vacuum energy either from the 00-component of the
energy-momentum tensor or from the transfer operators defined in terms of the scattering data
will not offer a uni v ersal outcome independent of the observer. In fact, ther e ar e not many re-
sults of the TGTG -formula in curved backgrounds, and sometimes it does not e v en e xist [ 32 ].
Howe v er, there is a special case to be taken into account. When the frequencies of the particles
created by the gravitational background are much smaller than the Planck frequency, one could
use the perturbation theory for this curved spacetime as a semiclassical approach to quantum
gravity [ 33 , 34 ]. In doing so, this weak gravitational backgrounds are treated classically and the
matter fields are the ones which will be quantized. The key point is that this gravity would be
strong enough to produce some effects on the quantum matter, but not so strong as to r equir e
its own quantization. This is exactly the case that is going to be considered in this work. 

Here, I deal with the Casimir force between singular plates in a solitonic background. In
particular, the plates are modeled by the Dirac point-like potential 

V δδ′ (z ) = v 0 δ(z − a ) + w 0 δ
′ (z − a ) + v 1 δ(z − b) + w 1 δ

′ (z − b) , (2) 

with v 0 , v 1 , w 0 , w 1 , a, b ∈ R and a < b . Above, δ′ denotes the first deri vati v e of the delta func-
tion. Dirac delta potentials are widely used as toy models for realistic materials like quantum
wires [ 35 ], and to analyse physical phenomena such as Bose-Einstein condensation in periodic
backgrounds [ 36 ], or light propagation in 1D relativistic dielectric superlattices [ 37 ]. Despite be-
ing a rather simple idealization of the real system, the δ function has been proved to correctly
r epr esent surface interactions in many models related to the Casimir effect [ 38 ]. For instance,
Dirac δ functions have been set on the plates acting as the electrostatic potential [ 39 ], to r epr e-
sent two finite-width mirrors [ 6 ], or to describe the permittivity and magnetic permeability in
an electromagnetic context, by associating them to the plasma frequencies in Barton’s model
on spherical shells [ 40 , 41 ]. On the other hand, the first deri vati v e of the delta potential has been
used to study mono-atomically thin polarizable plates formed by lattices of dipoles [ 42 ], and
to analyse resonances in 1D oscillators [ 43 ]. There is some controversy in the definition of the
δ′ potential since different regularizations produce different scattering data (see Ref. [ 44 ] and
r efer ences ther ein). Her e, I will use the one presented in Ref. [ 45 ], in which the authors define
it by introducing a Dirac delta potential at the same point to regularize the whole potential.
As they explained, the major advantage of this choice is that it enables defining this singular
potential in terms of matching conditions at the origin which do not depend on the choice of 
a regularization method. 

In order to study the Casimir force between singular Dirac delta plates in a PT background,
this article is organised as follows: Sections 2 and 3 involve the computation of the spectrum of 
scattering and bound states of the associated Schrödinger operator as well as the derivation of 
the Gr een’s functions, r especti v ely. In Sections 4 and 5 , the TGTG -formula and the DHN one
3/23 
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[ 46 ] will be used to analyse the quantum vacuum interaction energy and to study the Casimir
pr essur e between plates. Finally, Section 6 summarizes the main conclusions. The natural sys-
tem of units � = c = 1 will be used. 

2. Scattering data and spectrum 

The Casimir force between plates is due to the coupling between the quantum vacuum fluc-
tuations of the electromagnetic field with the charged current fluctuations of the plates [ 47 ].
For distances between plates rather larger than any other length scale concerning the electric
response of the plates, only the long wavelength transverse modes of the electromagnetic field
ar e r elevant to the interaction. They can be mimicked by the normal modes of a scalar field
whose dynamics is described by the action 

S[ φ] = 

1 

2 

∫ 

d 

4 x 

[
∂ μφ∂ μφ − V δδ′ (z ) φ2 − V PT (z ) φ2 ] . (3) 

Consider for simplicity a real massless scalar field φ confined between two parallel ( D −
1)-dimensional pla tes separa ted by a distance b − a in the axis orthogonal to the plates, i.e.
the z- axis. For isotropic and homogeneous plates, there exists a translational symmetry along
the surface of the plates, and the theory of free fields without boundaries is r ecover ed for the
parallel direction coordinates � x ‖ ∈ R 

D −1 . Splitting the spatial coordinate as x = ( � x ‖ , z ) , with
� x ‖ ∈ R 

D −1 and taking into account the Fourier decomposition of the field 

φ(t , x ) = 

∫ 

dω e −iωt φω 

(x ) , (4) 

the equation for the modes of the fluctuations field is gi v en by the non-relativistic Schrödinger
separable eigenvalue problem 

(−� + V PT (z ) + V δδ′ (z )) φω 

(x ) = ω 

2 φω 

(x ) . (5) 

In the equation above, � = �‖ + ∂ 2 z , and the frequencies follow the dispersion relation gi v en
by ω 

2 = 

� k 

2 
‖ + k 

2 . Ther efor e, the prob lem is separab le and onl y the direction ortho gonal to the
plates needs to be studied, as the spectrum is trivial in the other directions. From now on, I will
consider D = 3, just for simplicity. 

Notice that the non-relativistic Schrödinger operator related to the background in the di-
mension orthogonal to the plates, ˆ K PT = −∂ 2 z + V PT (z ) , is not essentially self-adjoint in the
Sobolev space of functions W 

2 
2 ( R − { a, b} , C ) . It is necessary to add some matching conditions

concerning the continuity of the wave function and the discontinuity of its deri vati v e at the
boundary points { a , b } in order to define the self-adjoint extensions of ˆ K PT in the aforemen-
tioned domain. These boundary conditions will be determined by the specific potential that
r epr esents the plates. For instance, if they are mimicked by the Dirac delta potential V δδ′ , the
domain of the self-adjoint extension of ˆ K PT is gi v en by the suitable matching conditions: 

D ˆ K PT 
= 

⎧ ⎪ ⎪ ⎪ ⎪ ⎨ 

⎪ ⎪ ⎪ ⎪ ⎩ 

φ ∈ W 

2 
2 ( R − { a, b} , C ) 

∣∣∣∣∣

⎛ 

⎜ ⎜ ⎜ ⎝ 

φ(a 

+ ) 
φ′ (a 

+ ) 
φ(b 

+ ) 
φ′ (b 

+ ) 

⎞ 

⎟ ⎟ ⎟ ⎠ 

= 

⎛ 

⎜ ⎜ ⎜ ⎜ ⎝ 

α0 0 0 0 

β0 α−1 
0 0 0 

0 0 α1 0 

0 0 β1 α−1 
1 

⎞ 

⎟ ⎟ ⎟ ⎟ ⎠ 

⎛ 

⎜ ⎜ ⎜ ⎝ 

φ(a 

−) 
φ′ (a 

−) 
φ(b 

−) 
φ′ (b 

−) 

⎞ 

⎟ ⎟ ⎟ ⎠ 

⎫ ⎪ ⎪ ⎪ ⎪ ⎬ 

⎪ ⎪ ⎪ ⎪ ⎭ 

, 

where αi = 

1 + w i / 2 

1 − w i / 2 

, βi = 

v i 
1 − (w i / 2) 2 

, i = 0 , 1 , (6) 

coming from the original work of Kurasov in one-dimensional systems [ 45 , 48 ]. The system of 
two plates in the chosen background has an open geometry so the positi v e energy spectrum will
4/23 
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be continuous. Scattering states correspond to solutions of the Schrödinger equation 

( ˆ K PT + V δδ′ ( z )) φ
ω, � k ‖ 

( z ) = k 

2 φ
ω, � k ‖ 

(z ) , (7) 

with k ∈ R (such that k 

2 > 0), and keeping in mind that the delta potential must be understood
as the aforementioned boundary conditions at z = a , b . Gi v en a linear momentum k , there
are two independent scattering solutions to be found. In order for the Casimir energy between
plates to be a non-negligible magnitude, the two objects have to be very close to each other. If the
distance between plates is smaller than the support of the background potential in such a way
tha t the pla tes are placed within this support, the scattering solutions for particles incoming
to the system from the left (also called right-handed solutions) and from right (left-handed
solutions), are respecti v ely of the form 

ψ 

R 

k (z ) = 

⎧ ⎪ ⎨ 

⎪ ⎩ 

f k (z ) + r R 

f −k (z ) , if z < a, 

B R 

f k (z ) + C R 

f −k (z ) , if a < z < b, 
t R 

f k (z ) , if z > b, 
(8) 

ψ 

L 

k (z ) = 

⎧ ⎪ ⎨ 

⎪ ⎩ 

t L 

f −k (z ) , if z < a, 

B L 

f k (z ) + C L 

f −k (z ) , if a < z < b, 
r L 

f k (z ) + f −k (z ) , if z > b. 
(9) 

Notice that f k ( z ) = e ikz (tanh ( z ) − ik ) are the eigenfunctions of the operator −∂ 2 z + V PT (z ) (i.e.
plane waves times first-order Jacobi polynomials). It is relevant to highlight that the transmis-
sion amplitudes t R 

( k ), t L 

( k ) are identical to each other due to the time-re v ersal invariance of the
Schrödinger operator. Consequently, they will be substituted by t ( k ) from now on. Replacing ( 8 )
and ( 9 ) in the matching conditions ( 6 ) and solving the resulting two systems of equations with
unknowns { r R 

, r L 

, t , B R 

, B L 

, C R 

, C L 

}( k ), the sca ttering da ta ar e obtained [they ar e collected in
Eq. ( A2 ) in Appendix A ]. 

The denominator of all the scattering parameters, ϒ( k ), is the spectral function (see its deriva-
tion in Appendix A ). The set of zeroes of ϒ( k ) can be the poles of the scattering matrix S ( k ).
Notice that the S ( k )-matrix admits an analytic continuation to the entire complex momentum
plane. The zeroes of the spectral function on the positi v e imaginary axis in the complex momen-
tum k -plane gi v es the bound states of the spectrum of the non-rela tivistic Schrödinger opera tor.
Making k → i κ in ϒ( k ) = 0, one can study the bound states as the intersections between an
exponential and a rational function via the transcendent equation 

−ϒ1 (κ ) 
ϒ2 (κ ) 

= e −2 κ (b−a ) , (10) 

where 

ϒ1 (κ ) = 4 (v 0 , w 0 , a, κ ) (v 1 , w 1 , b, κ ) , 

ϒ2 (κ ) = 16(κ − tanh a )(κ + tanh b) �(v 0 , w 0 , a, κ )�(−v 1 , w 1 , −b, κ ) , 

�(v i , w i , x, κ ) = −2 w i sech 

2 x − (v i − 2 w i κ )(κ − tanh x ) , 

(v i , w i , x, κ ) = [2 v i + κ (4 + w 

2 
i )](κ

2 − 1) + 2 sech 

2 x (v i + 2 w i tanh x ) . (11) 

Once the momenta of the bound states are determined, their energies can be computed by
means of E = ( i κ) 2 < 0. The lowest energy state will be characterized by E min . For some type of 
potentials (such the pure delta plates, i.e. w 0 = w 1 = 0), it is possible to gi v e an anal ytic form ula
to bound the energy of the states with the negati v e energy of the spectrum. In the pure delta
5/23 
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case, this energy takes the value 

E min = − 1 

16 

[ 
(| v 1 | + | v 0 | ) + 

√ 

(| v 1 | + | v 0 | ) 2 + 16 

] 2 
, (12) 

for all a , b , v 0 , v 1 � = 0. In other configurations, E min has to be obtained numerically. 
Finding the TGTG -formula implies focusing only in the scattering problem for one single

plate. If one of the delta plates is removed (for instance v 1 = w 1 = 0), the spectral function of 
the reduced system is 

(4 + w 

2 
0 ) κ

3 + 2 v 0 κ2 − (4 + w 

2 
0 ) κ − 2 v 0 tanh 

2 a + 4 w 0 tanh a sech 

2 a = 0 . (13) 

By studying the asymptotic behavior of Eq. ( 13 ), as well as its maxima and minima for different
values of the parameters, it can be seen that there may be two cases: only one bound state, or
two bound states. There is no zero mode because the state with wave vector k = 0 does not
constitute a pole of the S ( k )-matrix. The scattering data for the reduced system can be obtained
from equation ( A2 ), and they are gi v en by 

t � = 

−α0 W 

α0 f −k (a ) 
(
α0 f ′ k (a ) − β0 f k (a ) 

)− f k (a ) f ′ −k (a ) 
, 

r � R 

= 

− f k (a ) 
[(

α2 
0 − 1 

)
f ′ k (a ) − α0 β0 f k (a ) 

]
α0 f −k (a ) 

(
α0 f ′ k (a ) − β0 f k (a ) 

)− f k (a ) f ′ −k (a ) 
, 

r � L 

= 

− f −k (a ) 
[(

α2 
0 − 1 

)
f ′ −k (a ) − α0 β0 f −k (a ) 

]
α0 f −k (a ) 

(
α0 f ′ k (a ) − β0 f k (a ) 

)− f k (a ) f ′ −k (a ) 
, (14) 

where α0 , β0 are as defined in Eq. ( 6 ), and W is the Wronskian 

W ≡ W [ f k ( a ) , f −k ( a )] = −2 ik( k 

2 + 1) . (15) 

From now on, the superscript � , r in the scattering data indicates which plate is being consid-
ered: � for the plate placed on the left of the system and r for the one placed on the right. The
subscripts R , L refer to “diestro ” (right-handed) and “zurdo ” (left-handed) scattering. Notice
that when v 1 = w 1 = 0, the sca ttering da ta is such that B 

� 
R 

= t � , B 

� 
L 

= r � L 

, C 

� 
R 

= 0 , C 

� 
L 

= 1 . Simi-
larly, by setting v 0 = w 0 = 0 one obtains the reduced scattering data when the plate on the right
is the only one present in the system. In this case, { t r , r r R 

, r r L 

} are gi v en by Eq. ( 14 ) but replacing
α0 → α1 , β0 → β1 , a → b . Furthermore, C 

r 
L 

= t r , B 

r 
L 

= 0 , B 

r 
R 

= 1 , C 

r 
R 

= r r R 

. 
A rather important fact is that, due to the PT background potential, the translational in-

variance of the system is broken. V PT 

( z ) breaks the isotropy of the space, and consequently if 
f k ( z ) is a eigenfunction of the non-relativistic Schrödinger operator ˆ K PT , then f k ( z + a ) with
a ∈ R − { 0 } will no longer be another. This means that the scattering data explicitly depend on
the position of the plates in a non-trivial way. 

For computing the vacuum interaction energy in the corresponding QFT for the general case
in which v 0 , v 1 , w 0 , w 1 ∈ R − { 0 } , the value of the energy for the lo west ener gy bound state of 
the quantum mechanical prob lem e xplained in this section is essential. Since the bound state
with the lowest energy is characterized by E min , the mass of the fluctuations in the theory has to
be equal to this value of the energy for making fluctuation absorption impossible. The unitarity
of the QFT sets this lower bound for the mass of the quantum vacuum fluctuations, such that
the total energy of the lowest energy state of the spectrum will be zero . Thus , the spectrum of 
the associated QFT will consist of a set of discrete states with energies in the gap [0, | E min | ], and
a continuum of scattering states with energies above the threshold E = | E min | = m 

2 . The num-
ber of discrete states will be determined by the value of the coefficients { v 0 , v 1 , w 0 , w 1 }, with a
6/23 
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maximum of three being possible. 2 It is important to highlight that the value of E min must be
computed for the whole system of two objects plus the background potential. This is not con-
tradictory to the fact that if the Casimir energy is calculated with the TGTG -form ula, onl y the
transmission and reflection coefficients of the reduced system of an object in the background
potential are needed. This will be discussed in detail in Section 4 . 

3. Green’s function 

Once the spectral problem has been solved, the usual second quantization procedure could
be applied to promote the non-relativistic quantum mechanical theory to a QFT in which to
study the quantum vacuum interaction energy between objects. The TGTG -formula is based on
two main elements: the Green’s function, and the transfer operators. The characteristic Green’s
function can be obtained by solving the differential equation [ 

∂ μ∂ μ− 2 sech 

2 z + V δδ′ (z ) + m 

2 
] 

G(x 

μ, y 

μ) = δ(x 

μ − y 

μ) (16) 

for the complete Green’s function 

G(x, x 

′ ) = 

∫ 

d 

2 k ‖ 
(2 π ) 2 

e i 
� k ‖ ( � x ‖ −� x ′ ‖ ) 

∫ 

dω 

2 π
e −iω(t −t ′ ) G k (z, z ′ ) , (17) 

or equivalently by solving [ 
−∂ 2 z 1 − k 

2 − 2 sech 

2 z 1 + V δδ′ (z 1 ) 
] 

G k (z 1 , z 2 ) = δ(z 1 − z 2 ) (18) 

for the r educed Gr een’s function. Solving this differential equation r equir es assuming the con-
tinuity of G k ( z 1 , z 2 ) and the discontinuity of its first deri vati v e at the points { a , b }, as well as
imposing an exponentially decaying behaviour of the solutions at infinity. Another way to com-
pute the reduced Green’s function in the spatial dimension orthogonal to the surfaces of the
plates is by using [ 16 ] 

G k ( z, z ′ ) = 

u ( z − z ′ ) ψ 

R 

k ( z ) ψ 

L 

k ( z 
′ ) + u ( z ′ − z ) ψ 

R 

k ( z 
′ ) ψ 

L 

k ( z ) 

W [ ψ 

R 

k , ψ 

L 

k ] 
(19) 

with the two linear independent scattering solutions gi v en in Eqs. ( 8 )–( 9 ) for the complete sys-
tem of two plates in the PT background. Note that u( z − z ′ ) is the unit or Heaviside step func-
tion. Both aforementioned methods yield the same solution for the correlator. 

Moreover, the Wronskian W [ ψ 

R 

k , ψ 

L 

k ] has to be the same for the three zones in which the
two delta plates divide the space. This imposes the following relation between the scattering
coef ficients: t = B R 

C L 

− C R 

B L 

. This rela tion is useful to simplify the solutions of the Green’s
function in the different zones, and to rewrite them as 

G k (z 1 , z 2 ) = G 

PT 
k (z 1 , z 2 ) + �G k (z 1 , z 2 ) , (20) 

where �G k ( z 1 , z 2 ) is gi v en by Eq. ( A4 ) in Appendix A . 
Notice that the Green’s function for the kink potential centered at the origin without any

delta interactions (i.e. v 0 = w 0 = v 1 = w 1 = 0) takes the form 

G 

PT 
k (z 1 , z 2 ) = 

1 

W 

f −k (z < 

) f k (z > 

) = 

e ik| z 1 −z 2 | 

W 

(
k 

2 + ik| tanh z 1 − tanh z 2 | + tanh z 1 tanh z 2 
)
, 

(21) 
2 Although each δδ′ potential can hold at most two bound states, since the two plates are very close 
to gether, the w hole system of two pla tes in the PT background acts as a well tha t is not deep or wide 
enough to accommodate four bound states, but which can accommodate three. 
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where z < 

and z > 

are the lesser or the greater of z 1 and z 2 . It plays the same role as the Green’s
function G 

0 
k (z 1 , z 2 ) = e ik| z 1 −z 2 | / (−2 ik) in free plain backgrounds. This is due to the fact that

the PT potential is transparent (there is no additional reflection with respect to the free case).
Furthermore, since the PT potential breaks the isotropy of the space, the Green’s function is
such that G 

PT 
k (z 1 , z 2 ) � = G(z 1 − z 2 ) . In fact, G 

PT ( z , z ) is not a constant as happens in the free
flat case, but depends on the spatial orthogonal coordinate in a non-trivial way, and thus spatial
translations are no longer symmetries of the system. 

4. Casimir energy and T GT G for mula 

The quantum vacuum energy per unit area of the plates is computed as the summation over all

the frequencies ω = 

√ 

� k 

2 
‖ + k 

2 + m 

2 of the fields modes. Notice that 

ω 

2 ∈ σ ( −∂ 2 � x ‖ + 

ˆ K PT + V δδ′ ( z )) , (22) 

wher e σ r efers to the spectrum of the operator. Howe v er, 

˜ E 0 

A 

= 

1 

2 

∫ ∑ 

k 

∫ 

R 

2 

d 

� k ‖ 
(2 π ) 2 

√ 

m 

2 + k 

2 + 

� k 

2 
‖ , (23) 

has a dominant ultraviolet di v ergence because the energy density of the free theory in the bulk
gi v es an infinite result. This is so because the bulk in this case involves the space between the
plates, and although the plates are separated by a finite small distance, their surface area is
intended to be infinitely long. Thus the volume of the bulk is infinitely large. The fact that the
plates have infinite area also means that the self-energy of each plate is a di v ergence of a lesser
degree than that of the bulk. This di v ergence is often called subdominant di v ergence [ 49 ]. The
aim of this work is to compute the quantum vacuum interaction energy, which is the only part
of the quantum vacuum energy 

˜ E 0 that depends on the distance between plates, and gi v es a
finite result. In order to obtain this quantity, an exponentially decaying function acting as a
regulator is introduced to remove the aforementioned di v ergences. In such a way, one rewrites
the integration over the parallel modes as 

lim 

ε→ 0 

∫ 

R 

2 

d 

� k ‖ 
(2 π ) 2 

√ 

� k 

2 
‖ + k 

2 + m 

2 e −ε( � k 2 ‖ + k 2 + m 

2 ) = lim 

ε→ 0 

1 

2 π
χ (k, ε) e −ε(k 2 + m 

2 ) , (24) 

with 

χ (k, ε) = 

√ 

π

4 ε3 / 2 
+ 

√ 

π (m 

2 + k 

2 ) 
4 

√ 

ε
− 1 

3 

(
k 

2 + m 

2 )3 / 2 + o(ε) . (25) 

Eliminating the contribution of the parallel modes to the dominant and subdominant di v er-
gences means removing the first two terms in χ ( k , ε) before performing the limit. In this way 

˜ E 0 

A 

= −1 

2 

∫ ∑ 

k 

(m 

2 + k 

2 ) 3 / 2 

6 π
. (26) 

In the equation above, the sum over modes of the spectrum in the orthogonal direction splits
into the summation over a finite number of states with positi v e energy in the gap [0, | E min | ]
(coming from the bound states of the associated quantum mechanical problem) and the integral
over the continuous states with energies greater than | E min | . 

Now, it is necessary to remove from Eq. ( 26 ) the contribution to the divergences coming
from the modes in the ortho gonal direction, w here the one-dimensional kink li v es. These con-
tributions ar e differ ent from the ones of the modes in the parallel directions, because in the
8/23 
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orthogonal direction the space is no longer a free one. The usual method is to put the system
into a very large box of length L with periodic boundary conditions (p.b.c.) at its edges: 

ψ 

(
−L 

2 

)
= ψ 

(
L 

2 

)
, ψ 

′ 
(

−L 

2 

)
= ψ 

′ 
(

L 

2 

)
. (27) 

By so doing, the entire spectrum of the Schrödinger operator ˆ K = −∂ 2 z − 2 sech 

2 (z ) + V δδ′ (z )
becomes discrete. This fact will be taken into account below. 

On the one hand, the contribution of the discrete set of N states in the gap to the vacuum
interaction energy is 

−1 

2 

N ∑ 

j=1 

(√ 

(iκ j ) 2 + m 

2 
)3 

6 π
. (28) 

The frequencies of these bound states for each configuration ( v 0 , v 1 , w 0 , w 1 , a , b ) will be de-
termined numerically by solving ϒ(iκ ) = 0 , κ > 0 from the scattering problem. If there were
half-bound states in the spectrum (i.e. states with energies that lie in the threshold E = | E min | ),
they would have to be accounted for with a w eight of 1/2. How e v er, this will not be the case
covered in the example of the two Dirac plates in a PT background. 

On the other hand, concerning the states with energy E > m 

2 , it is necessary to compute 

−1 

2 

∑ 

k n ∈ σ+ ( ̂  K ) 

(√ 

k 

2 
n + m 

2 
)3 

6 π
, (29) 

where σ+ ( ˆ K ) = { k n ∈ σ ( ˆ K ) | k 

2 
n + m 

2 > | E min |} . The differential equation 

ˆ K ψ (z ) = k 

2 
n ψ (z ) with

periodic boundary conditions at ±L /2 must be solved. Notice that now the wave function
ψ (z ) = Aψ 

R 

k (z ) + Bψ 

L 

k (z ) is a linear combina tion of the sca ttering solutions ( 8 ) and ( 9 ). The
resulting system of equations admits a solution whene v er the following spectral equation holds: 

h p.b.c. (k, L ) ≡ 2 t W − 2(t 2 − r R 

r L 

) f k 

(
L 

2 

)
f ′ k 

(
L 

2 

)
+ 2 f −k 

(
L 

2 

)
f ′ −k 

(
L 

2 

)

+ (r R 

+ r L 

) 
[

f −k 

(
L 

2 

)
f ′ k 

(
L 

2 

)
+ f k 

(
L 

2 

)
f ′ −k 

(
L 

2 

)]
= 0 . (30) 

The sca ttering da ta are again gi v en in Eq. ( A2 ) of Appendix A . The discrete set of zeroes { k n }
of the secular function h p . b . c . ( k , L ) on the real axis will be the frequencies of the modes over
which one has to perform the summation in Eq. ( 29 ). This sum can be computed through a
comple x integral ov er a contour enclosing all the zeroes of h p . b . c . ( k , L ). By using the residue
theorem in complex analysis and also by taking into account the states in the gap, the total
quantum vacuum interaction energy reads 

E 0 

A 

= −1 

2 

[∮ 

�

dk 

2 π i 
(m 

2 + k 

2 ) 3 / 2 

6 π
∂ k log h p.b.c. (k, L ) 

]
− 1 

2 

N ∑ 

j=1 

(√ 

(iκ j ) 2 + m 

2 
)3 

6 π
, (31) 

where � is the contour represented in Fig. 1 . It can be proved that the integration over the
cir cumfer ence ar c of the contour is zero in the limit R → ∞ . Hence, the integration over the
whole contour � reduces to the integration over the straight lines ξ± = ±i ξ + m where the
parameter fulfils ξ ∈ [0, R ]. 

Moreover, the dominant and subdominant di v ergent terms associated with the orthogonal
modes and caused by the confinement of the system in a very lar ge bo x must be subtracted as
9/23 
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Fig. 1. Complex contour that encloses all the zeroes of the spectral function when R → ∞ . In this 
contour, �± = { m + ξe ±iγ | ξ ∈ [0 , R ] } and �3 = { m + Re iν | ν ∈ [ −γ , γ ] } . The angle γ = π /2 is chosen. 
W hen integra ting, the contour will be run counterclockwise. 
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explained in Refs. [ 50–52 ], i.e. by computing ∫ R 

0 

dξ

12 π2 i 

{
(m 

2 + ξ 2 
+ 

) 3 / 2 
[

L − L 0 − ∂ ξ log 

h p.b.c. (ξ+ 

, L ) 
h p.b.c. (ξ+ 

, L 0 ) 

]
(32) 

−(m 

2 + ξ 2 
−) 3 / 2 

[
L − L 0 − ∂ ξ log 

h p.b.c. (ξ−, L ) 
h p.b.c. (ξ−, L 0 ) 

]}

in the limits L 0 , R → ∞ . The result of the integration does not depend on the box size, and
consequently one could study the limit L → ∞ . At this point, re v ersing the change of variab le
ξ → −ik , due to the Wick rotation on the momentum, yields the DHN formula [ 46 ] 

E 0 = − A 

12 π2 

∫ ∞ 

m 

d k 

(√ 

k 

2 + m 

2 
)3 d δ(k) 

d k 

− A 

2 

N ∑ 

j=1 

(√ −(κ j ) 2 + m 

2 
)3 

6 π
, (33) 

with m 

2 = | E min | , and where δ( k ) is the phase shift related to the scattering problem in the
direction orthogonal to the plate: 

δ( k) = 

1 

2 i 
log −π

[
t 2 ( k) − r R 

( k) r L 

( k) 
]
. (34) 

So far, I have considered the scattering problem for waves interacting with a system inside
a large box, without specifying the type of system I was working with. In addition, the diver-
gences related to putting the system in a box were eliminated. Howe v er, notice that the system
is composed by two infinitely large plates and a background potential. Consequently, the sub-
dominant di v ergences associated with the plates are still present and a renormalization mode-
by-mode is necessary. This step is achie v ed by subtracting from the phase shift of the whole
system with two plates the corresponding phase shifts associated with a reduced problem with
only one delta plate: 

˜ δ(k) = δv 0 w 0 ,v 1 w 1 (k) − δv 0 w 0 (k) − δv 1 w 1 (k) . (35) 

It is worth highlighting that this equation constitutes a subtraction mode-by-mode of the spec-
trum to complete the renormalization. This method is different from the frequently used one
of setting a cutoff in the integral o ver modes to remo ve the high energetic part of the spectrum
10/23 
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that does not feel the background. The phase shift ( 35 ) has to be used in the DHN formula ( 33 )
to obtain a finite result. 

Ne v ertheless, instead of using the aforementioned approach with the deri vati v e of the phase
shifts acting as the density of states, the TGTG -formula will be used. The results will be the
same using either of these two procedures. Howe v er, with the TGTG r epr esentation we do not
hav e to wor k with the scattering of the complete problem, but with that of the reduced problem
of a single object in the background. Hence, the numerical computational effort is much lower.

In the seminal paper [ 11 ], O. Kenneth and I. Klich gi v e the f ollowing f ormula f or the quantum
vacuum interaction energy between two compact bodies (1 and 2) in one spatial dimensional
flat spacetime: 

E 0 = −i 
∫ ∞ 

0 

dω 

2 π
tr log (1 − T 1 G 12 T 2 G 21 ) . (36) 

Notice that the case the authors considered does not present bound states with negati v e energy
in the spectrum of the corresponding Schrödinger operator in quantum mechanics. On the
contrary, these type of states must be included in the case I am considering. Furthermore, in
appendices B and C of Ref. [ 11 ] the authors prove that for any pair of disjoint finite bodies
separated by a finite distance, and any Green’s function that is finite away from the diagonal,
the TGTG -operator is trace-class. The modulus of its eigenvalues is less than one and hence
log (1 − TGTG ) is well defined. A similar reasoning can be followed here for the system of a
pair of two-dimensional plates, which are assumed not to touch, in the background of a kink.
Thus, the only step left to be taken is to calculate the T -operators for each one of the plates. 

From the well-known Lippmann–Schwinger equation 

�G k (z 1 , z 2 ) = −
∫ 

d z 3 d z 4 G 

PT 
k (z 1 , z 3 ) T k (z 3 , z 4 ) G 

PT 
k (z 4 , z 2 ) , (37) 

and 

˜ K z 1 G 

PT 
k (z 1 − z 2 ) = δ(z 1 − z 2 ) , it is easy to see that 

− ˜ K z 2 
˜ K z 1 �G k (z 1 , z 2 ) = 

∫ 

d z 3 d z 4 δ( z 1 − z 3 ) T k ( z 3 , z 4 ) δ( z 4 − z 2 ) , (38) 

where ˜ K z = 

ˆ K PT (z ) − k 

2 . Notice that in the above formula, �G k ( z 1 , z 2 ) corresponds to the
Green’s function of only one plate in the PT potential, i.e. the one gi v en in Eq. ( A4 ) with the co-
efficients of one of the plates equal to zero. Due to the absolute values contained in G 

PT 
k , to ob-

tain the transfer matrix T k ( z 1 , z 2 ) corresponding to one plate, the only non-trivial contribution
comes from the case in which one point is on the left and the other one on the right of the plate.
Hence, since in that case the Green’s function is gi v en by �G k (z 1 , z 2 ) = (t − 1) G 

PT 
k (z 1 , z 2 ) , one

needs to compute 

T k (z 1 , z 2 ) = −(t − 1) ˜ K z 2 
˜ K z 1 G 

PT 
k (z 1 , z 2 ) . (39) 

In order to obtain the transfer matrix associated with the plate on the right 3 , one assumes the
plate sitting at the origin ( b = 0) for simplicity, and hence one of the coordinates z 1 , z 2 will be
3 For computing the transfer matrix of the left-hand plate, one sets v 1 = w 1 = 0 in the transmission 

coefficient ( A2 ) involved in the Green’s function ( A4 ) and considers the case in which the left-hand plate 
is centered at a = 0. 
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greater than zero and the other will be less than zero. Taking into account that 

e ik| z 1 −z 2 | = e ik(| z 1 | + | z 2 | ) , 

| tanh z 1 − tanh z 2 | = tanh | z 1 | + tanh | z 2 | , 
tanh z 1 tanh z 2 = − tanh | z 1 | tanh | z 2 | , (40) 

(in both the cases z 1 < 0, z 2 > 0 and z 1 > 0, z 2 < 0), it is possible to rewrite the free Green’s
function in the background of the kink as 

G 

PT 
k (z 1 , z 2 ) = − 1 

W 

f k (| z 1 | ) f k (| z 2 | ) . (41) 

Because the Green’s differential equation (
−∂ 2 | z | − k 

2 − 2 sech 

2 z 
)

f k (| z | ) = 0 (42) 

holds, and using the formulas for the deri vati v es of functions depending on absolute values 

df k (| z | ) 
dz 

= f ′ k (| z | ) sign z, 

d 

2 f k (| z | ) 
dz 2 

= f 
′′ 
k (| z | ) + f ′ k (| z | ) 2 δ(z ) , (43) 

the transfer matrix for the right-hand plate can be written as 

T k (z 1 , z 2 ) = 

t − 1 

W 

4 δ(z 1 ) δ(z 2 ) f ′ k (| z 1 | ) f ′ k (| z 2 | ) = −4 δ(z 1 ) δ(z 2 ) �G(z 1 , z 2 ) 
f ′ k (| z 1 | ) 
f k (| z 1 | ) 

f ′ k (| z 2 | ) 
f k (| z 2 | ) 

= 

| W | 2 
k 

4 
δ(z 1 ) δ(z 2 )�G k (z 1 , z 2 ) . (44) 

The Green’s function for one delta plate is defined as the following piece-wise function: 

�G k (z 1 , z 2 ) = 

⎧ ⎪ ⎨ 

⎪ ⎩ 

r L 
W 

f k ( z 1 ) f k ( z 2 ) , if z 1 , z 2 > b, 
r R 
W 

f −k (z 1 ) f −k (z 2 ) , if z 1 , z 2 < b, 
t−1 
W 

f k ( z > 

) f −k ( z < 

) , otherwise , 
(45) 

with the scattering data as gi v en in Eq. ( A2 ) but for the case v 0 = w 0 = 0. Consequently, 

T k (z 1 , z 2 ) = −W 

∗

k 

2 
δ(z 1 ) δ(z 2 ) 

⎧ ⎪ ⎨ 

⎪ ⎩ 

r L 

(b = 0) , 
r R 

(b = 0) , 
1 − t(b = 0) . 

(46) 

Here the asterisk means the complex conjugate. The Lippmann–Schwinger operator is related 

to the scattering matrix by S = 1 − i δ( ω − ω 

′ ) T . This implies normalizing T so that the factor
k 

−2 cancels out. 
When the delta potential which mimics the plate is evaluated at another point different from

the origin, the just-computed result for T k ( z 1 , z 2 ) is valid once after performing the translations
z 1 �→ z 1 − b and z 2 �→ z 2 − b . Notice that in the definition of T at a point different to z = 0,
the translation must be understood as replacing the scattering coefficients at z = 0 contained
in its definition by the ones at z = b . Due to the PT potential, the isotropy of the spacetime
is broken. Hence, r R , L 

( b ) � = r R , L 

(0) e ikb , so the general translations z 1 �→ z 1 − b and z 2 �→ z 2 − b
aforementioned must not be interpreted in this usual sense. The T operator for the right-hand
side plate is thus gi v en by 

T (z 1 , z 2 ) = −W 

∗δ(z 1 − b) δ(z 2 − b ) 

⎧ ⎪ ⎨ 

⎪ ⎩ 

r L 

(b ) , z 1 , z 2 → b 

+ , 

r R 

(b ) , z 1 , z 2 → b 

−, 
1 − t(b) , otherwise , 

(47) 
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and analo gousl y for the pla te loca ted a t z = a . 
Notice that the T -matrix is the probability amplitude for a particle to interact with the poten-

tial but without propagation. Hence, in the system of two plates mimicked by point-like delta
potentials in the background of a kink, the definition of the T -operator must depend on �G
evalua ted a t the point a t which the delta potential is centered, as it is the case in Eq. ( 47 ). It
could not depend on an arbitrary point of the spacetime for causality not to be violated. Notice
that in more general cases, when the potential r epr esenting each object is not supported at a
point but a compact interval, T is local. Although in this case T would depend on the points
that constitute the support of the potential, it does not violate causality because it does not
depend on arbitrary points. 

By definition G 

PT (z 1 , z 2 ) = 〈T φ(z 1 ) φ(z 2 ) 〉 , an expression in which the time-ordering operator
product has been considered. All eigenstates of ˆ K PT with fixed energy k 

2 can be described in
terms of the orthonormal basis of left- and right-hand PT free waves. By labeling R = f k ( z )
and L = f −k ( z ), the Green’s function or propagator can be written in this basis as 

G 

PT ( a, b) = 

1 

W 

| L ( a ) 〉〈 L ( b) | , G 

PT ( b, a ) = 

1 

W 

| R ( b) 〉〈 R ( a ) | , (48) 

where a < b , and the trace of the TGTG -operator behaves as 

| L ( a ) 〉〈 L ( b) | T 

r | R ( b) 〉 = r � L 

(v 0 , w 0 , a, k) r r R 

(v 1 , w 1 , b, k) . (49) 

It has been taken into account that T | R 〉 = | L 〉 and vice versa. Thus, it is clear that the TGTG -
formula will involve the reflection coefficients, which depend explicitly on the position of each
plate. The above formula is the only product of the T -matrix components that allows coinci-
dences of the z 1 , z 2 points in [ a , b ] and contributes to the quantum vacuum interaction energy
between plates. In the special case discussed here, the TGTG operator has a rank equal to one.
This implies that 

tr log (1 − T GT G) = log det (1 − T GT G) = log (1 − tr T GT G) . (50) 

For other cases, if the modulus of the eigenvalues of the TGTG operator is less than one, it is
still possible to use 

tr log (1 − T GT G) = log det (1 − T GT G) ≈ log (1 − tr T GT G) (51) 

as a good approximation up to first order to simplify Eq. ( 36 ). The demonstration is collected
in Appendix B . In summary, replacing Eqs. ( 49 ) and ( 50 ) in Eq. ( 36 ), and generalizing it to three
dimensions, leads to the final expression ( 52 ) with m 

2 = | E min | : 

E 0 

A 

= −1 

2 

N ∑ 

j=1 

(√ 

−κ2 
j + m 

2 
)3 

6 π
+ 

1 

8 π2 

∫ ∞ 

m 

dξ ξ
√ 

ξ 2 − m 

2 log (1 − Tr T GT G ξ ) , 

= −1 

2 

N ∑ 

j=1 

(√ 

−κ2 
j + m 

2 
)3 

6 π
+ 

1 

8 π2 

∫ ∞ 

m 

dξ ξ
√ 

ξ 2 − m 

2 log 

[
1 −r � L 

(v 0 , w 0 , a, iξ ) r r R 

(v 1 , w 1 , b, iξ ) 
]
. 

(52) 

Ther e ar e some details that ar e worth highlighting. First, if f ±( z ) wer e r eplaced by the usual
plane waves, Kenneth and Klich’s original TGTG -formula would be r estor ed. The r eason is
tha t, in fla t isotropic spacetimes, the sca ttering coef ficients for pla tes placed a t another point
different from the origin are equal to the ones at z = 0 times an exponential factor that accounts
13/23 
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for the translation that has taken place: 

r � L 

(a ) = r � L 

(0) e −2 iak = r � L 

( 0) W G 

(0) 
−k ( −a, a ) , 

r r R 

(b) = r r R 

(0) e 2 ibk = r r R 

( 0) W G 

(0) 
k ( −b, b) . (53) 

On the contrary, the main difference when working with weak and transparent curved space-
times that break the isotropy of the space is that this rule no longer applies. Thus, the scattering
coefficients for plates placed at another point different from the origin are equal to the ones eval-
ua ted a t z = 0 times the quotient between the transmitted probability amplitude a t the generic
point and the one at z = 0, and multiplied by another function related to the configuration of 
the space: 

r � L 

(a ) = r � L 

( 0) 
G 

PT 
−k ( −a, a ) t(a ) h 

+ (α0 , β0 , −a ) 

G 

PT 
−k ( 0 , 0) t(0) h 

+ (α0 , β0 , 0) 
, 

r r R 

(b) = r r R 

( 0) 
G 

PT 
k ( −b, b) t(b) h 

−(α1 , β1 , b) 

G 

PT 
k ( 0 , 0) t(0) h 

−(α1 , β1 , 0) 
, (54) 

where h 

±(αi , βi , x ) = αi βi ± (α2 
i − 1) f ′ (k , x ) / f (k , x ) . This fact is crucial to generalize the

TGTG -formula in the case studied. 
Secondly, by defining the potential V i ( z ) to describe each of the two plates as 

V i (z ) = v i δ(z − z i ) + w i δ
′ (z − z i ) (55) 

(with i = 0, 1 and z 0 = a , z 1 = b ), the Schrödinger operators ˆ K i = −∂ 2 z − V i (z ) are defined over
a Hilbert space that, in general, is not isomorphic to that of ˆ K PT . Hence, G 

PT and T 

r , � do not
act in the same spaces, and T 

� G 

PT T 

r G 

PT is ill-defined. To avoid this problem, a Wick rotation
of the momentum k must be performed in order for all the operators to act in the same Hilbert
space. The integral ( 52 ) is thus convergent and can be evaluated numerically with Mathematica .
In the next section, the results of the Casimir energy for some configurations of the plates in
the PT background potential will be discussed. 

5. Casimir pr essur e 

Once the quantum vacuum interaction energy is determined, one can study the Casimir force
between plates as F = − ∂ E 0 /∂ d , where d is the distance between plates. Ne v ertheless, as al-
read y explained, the transla tional invariance is br oken due to the PT backgr ound, which means
that the scattering data for the plates explicitly depend on the position in a non-trivial way.
Hence, when computing the Casimir force, a non-trivial contribution coming from the deriva-
ti v es of the scattering amplitudes of one of the plates with respect to the position will appear.
There is an ambiguity not yet clarified in this calculation. One can introduce the dependence
on the distance between plates in three different ways: 

(1) Putting the left-hand side plate at z 1 = a and the right-hand side one at z 2 = a + d . In
this case, only the sca ttering da ta of the plate on the right will depend on the distance d ,
and only the deri vati v e of r r R 

(v 1 , w 1 , a + d, k) with respect to d will appear. 
(2) Considering the right-hand side plate placed at z 2 = b and the left one at z 1 = b − d .

Analo gousl y to the previous case, the derivative of r � L 

(v 0 , w 0 , b − d, k) with respect to
the distance is the only possible contribution. 

(3) When one of the plates is to the left of the origin and the other one to the right, one could
describe the location of the plates as the left one being at z 1 = −d + b and the other one
14/23 
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Fig. 2. Casimir energy per unit area between plates situated at a = −0.2, b = 0.8, as a function of the 
coef ficient w 1 . Dif ferent configura tions ar e shown: (a) Pur e δ′ plates (i.e. v 0 = v 1 = 0) with w 0 = 3 (rhombi), 
(b) identical plates characterized by v 0 = v 1 = 1 and w 0 = w 1 (circles), and (c) opposite plates described 

by v 0 = v 1 = 1 and w 0 = −w 1 (squares). 

Fig. 3. Casimir energy per unit area between plates situated at a = −0.2, b = 0.8, as a function of the 
coefficient w 1 . A generic δδ′ potential with v 0 = 1, v 1 = −4, w 0 = 2.5 has been considered. 
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at z 2 = d + a , with a < 0 and b , d > 0. This case is different because the deri vati v es of the
reflection coefficients of both plates r r R 

(v 1 , d + a, k) and r � L 

(v 0 , −d + b, k) will be taken
into account. 

It is work in progress to check that these three situations gi v e rise to the same force. Howe v er,
it seems reasonable to think that if the Casimir energy between plates has a change in the sign
for some values of the parameters { v 0 , v 1 , w 0 , w 1 , a , b }, the Casimir force will present that
too. Consequently, studying numerical results for the quantum vacuum interaction energy is
enough to discuss whether this flip of sign appears as a consequence of the introduction of the
δ′ potential, as was the case in other configurations in flat spacetimes [ 16 , 53 ]. 

Figures 2 , 3 , and 4 show the quantum vacuum interaction energy per unit area of the plates
for dif ferent configura tions of the system of two plates in the PT background. As can be seen
in the figures above, the energy is always negative, independently of the value of the δ and δ′ co-
efficients. Furthermore, it could be checked numerically that the quantum vacuum interaction
energy is definitely negati v e, regar dless of the relati v e position of the plates with respect to the
kink center as well. This implies that the Casimir force between plates will always be attracti v e
in this system. Howe v er, due to the changes of the spectrum of bound states as a function of 
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Fig. 4. Casimir energy per unit area between pure delta plates ( w 0 = w 1 = 0) situated at a = −b = −0.5 

as a function of v 1 . In this plot v 0 = −3 (circles), v 0 = 0.1 (squares), and v 0 = 4 (rhombi). 
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{ v 0 , v 1 , w 0 , w 1 }, and the relati v e position between the plates and the kink, there is a peculiar
fact characteristic of the spectra shown in Figs. 2 and 4 . The sudden discontinuities present in
the plots are related to the ‘loss’ of one bound state with very low k = i κ (nearly zero) in the
spectrum of the system. At this point, it is necessary to realize that the whole system of the two
plates together with the PT potential acts as a well with a fixed depth and width. Consequently,
a t the configura tion in the space of parameters at which the jump appears, the resulting well is
not deep enough to hold more bound states with large negati v e energy. This loss of a bound
state, which becomes a state in the continuum, translates into a jump in the energy, because
the terms related to the states within the gap gi v e the major contribution to the total energy.
The jump discontinuities in the energy appear for the δδ′ plates case whene v er v i > 0. It can be
checked that for the cases of identical and opposite plates, if v i < 0, the results would be qual-
itati v ely similar to those shown in Fig. 3 . Consequently, the introduction of the δ′ potential
modifies the spectrum in such a way that the well r epr esented by the system can better accom-
moda te bound sta tes if v i < 0. In these cases, for dif ferent configura tions of the coefficients of 
the δδ′ functions very close to each other, no bound states with momenta close to zero are lost.

Another important conclusion can be drawn. For flat spacetimes, it has been proved that the
introduction of the δ′ potential causes the sign of the force to change in different areas of the
parameter space. This behaviour has been observed for instance for a scalar field and two con-
centric spheres defined by such a singular δδ′ potential on their surfaces [ 53 ], or in Ref. [ 54 ] for
δδ′ plates. Howe v er, curiously, when considering this last configuration in a sine-Gordon kink
spacetime, the change of sign in the energy disa ppears. Namel y, one can consider a curved
spacetime that is confining (in the sense that the background acts as a well) and the plates are
within the support of that well. Then, e v en in the case where the plates act as very repulsive bar-
riers, ther e ar e still negati v e energy states in the spectrum of the associated Schrödinger opera-
tor, and the Casimir energy between plates will be attracti v e. Consequently, although the back-
ground potential under consideration constitutes an example of a weak curved background, 
the results are quite different from the flat case. 

When the PT potential is not confined at all between the plates and they are far from the
kink centre, the system of two δδ′ -plates in flat spacetime is r ecover ed. This is the reason that
the numerical r epr esentation for this situation, which has already been studied in the literature
[ 54 ], is not included here. 
16/23 



PTEP 2024 , 053A03 L. Santamaría-Sanz 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

D
ow

nloaded from
 https://academ

ic.oup.com
/ptep/article/2024/5/053A03/7649369 by U

niversidad de Burgos user on 22 January 2025
Finally, it is worth pointing out that e v en in the case where there is only one plate in the
system, the other plate feels the interaction because there is still a non-zero quantum vacuum
interaction energy in the system. This can be checked by looking at the non-zero values of the
energy appearing in the vertical axis for the pure δ′ plates (in this axis, w 1 = 0 and there is no
right-hand plate in the system) in Fig. 2 . 

6. Conclusions 
In this work, a quantum scalar field between two parallel two-dimensional plates in a sine-
Gordon background at zero temperature is presented. The main result is the generalization
of the TGTG -f ormula f or weak and tr ansparent gr avitational backgrounds in which the fre-
quencies of the particles created by the gravitational background are much smaller than the
Planck frequency, and the fields could be asymptotically interpreted as particles. The quantum
vacuum interaction energy has been calculated using this form ula, w hich onl y depends on the
reflection coefficients associated with the scattering problem. They involve a dependence on the
solutions of the Schrödinger equation for the specific background chosen, which play the same
role as the plane waves in flat spacetimes. The Casimir energy thus depends on the parame-
ters describing the potentials and on the distance from the plates to the center of the kink. To
obtain the energy, it has been necessary to compute the Green’s functions from the scattering
da ta. The transfer ma trix has been deter mined with complete generality too, in ter ms of the
Green’s function. Although the TGTG -formula has the advantage that it depends only on the
sca ttering da ta of one of the pla tes, and it is not necessary to solve the scattering problem of 
the whole system, the well-known DHN formula has also been deri v ed for completeness. The
virtue of the TGTG -formula obtained here is that it can be easily generalized to other types of 
configurations, either for another background or for other potentials that could properly mimic
the plates. 

As an example, two plates mimicked by a Dirac δ-potential and its first deri vati v e in a back-
ground of a topological PT kink is studied. The quantum vacuum fluctuations around the kink
solution could be interpreted as mesons propagating in the spacetime of a domain wall. One of 
the relevant characteristics of the PT background is that the translational symmetry is broken
and the space is anisotropic. This translates into the fact that the scattering coefficients, as well
as the Green’s function, will depend on the position of the plates in a non-trivial way. The wave
functions of the continuous spectrum of states with positi v e energy hav e been characterized
by means of these sca ttering da ta. The bound states have also been studied, setting a threshold
for the minimum negati v e energy in the system. The unitarity of the QFT r equir es this lower
bound be fixed as the mass of the quantum vacuum fluctuations, so that the total energy of the
lo west ener gy sta te of the spectrum will be zero, making fluctua tions in absorption impossible.
It is worth highlighting that the quantum vacuum energy for this (3 + 1)-dimensional problem
is only negati v e, independently of the value of the coefficients of the δδ′ potentials and their
loca tion in rela tion to the kink center. This implies that the Casimir force between plates will
be attracti v e in this system. Furthermore, e v en in the case wher e ther e is only one plate in the
system, the other plate feels the Casimir interaction because there is still a non-zero quantum
vacuum interaction energy in the system. 

Once the Casimir energy between plates in the background of a sine-Gordon kink has been
computed by using the TGTG -formula, it would be enlightening to obtain the same result but
from the integration of the 00-component of the energy-momentum tensor. In this way one
17/23 
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could also study the spatial distribution of the energy density. This is left for further investiga-
tions. 

I w ould lik e to finish by mentioning a possible future phenomenolo gical a pplication of the
study collected in this work. Notice that in the Casimir effect, the electromagnetic force re-
sults from the computation of the one-loop quantum correction to the vacuum polarization
in QED. Ne v ertheless, taking a quadra tic approxima tion for the action implies tha t it does
not depend on the coupling constant of the theory, and for that reason the force is relevant at
the nanometre scale. By the same argument, if one-loop quantum corrections to the graviton
propaga tor were calcula ted, the coupling constant of the gravitational theory would not ap-
pear either. And ther efor e, since the graviton has zero mass, one could think of studying the
quantum interacting force between gravitational objects separated by a small distance, using 

the same quadratic approximation reasoning applied her e. The for ce caused by non-massi v e
quantum vacuum fluctuations around a classical solution for gravitons coupled to no matter
which other massi v e field would constitute an example of quantum corrections to the gravita-
tional field theory. The difficulty will lie in finding a material that is opaque to the gravitational
waves [ 55 ]. Although interesting, this open problem is left for future research. 
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Appendix A. Scattering data and Green’s function for two δδ′ plates in a PT background
The scattering data as well as the spectral function are obtained directl y w hen the system of Eqs.
( 8 ), ( 9 ) and ( 6 ) is solved with the software Mathematica . More specifically, for the left-to-right
case, if one replaces Eq. ( 8 ) in the matching conditions of Eq. ( 6 ) one obtains the following
system: 

[ B R 

f k (z ) + C R 

f −k (z )] | z → a = α0 [ f k (z ) + r R 

f −k (z )] | z → a 

∂ 

∂z 
[ B R 

f k (z ) + C R 

f −k (z )] | z → a = β0 [ f k (z ) + r R 

f −k (z )] | z → a + 

1 

α0 

∂ 

∂z 
[ f k (z ) + r R 

f −k (z )] | z → a 

t R 

f k (z ) | z → b = α1 [ B R 

f k (z ) + C R 

f −k (z )] | z → b (A1) 

∂ 

∂z 
[ t R 

f k (z )] | z → b = β1 [ B R 

f k (z ) + C R 

f −k ( z )] | z → b + 

1 

α1 

∂ 

∂z 
[ B R 

f k ( z ) + C R 

f −k (z )] | z → b . 
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Solving this system of equations, the scattering data for the non-relativistic mechanical
problem of scalar fields propagating in the curved background of a topological PT kink
while interacting with two Dirac δδ′ plates are obtained. They are gi v en by Eq. ( A2 ). The
right-to-left scattering can be obtain analo gousl y by replacing Eq. ( 9 ) in Eq. ( 6 ), and it is
easy to check that the denominator of the scattering data is the same as in the left-to-right
case. 

t(k) = 

1 
ϒ(k) 

α0 α1 W 

2 , 

r R 

(k) = 

1 
ϒ(k) 

[ − f k (b) f k (a ) 
(

f ′ −k (b) 
(

f ′ k (a ) − α0 A 0 (a ) 
)+ α2 

0 f 
′ 
−k (a ) 

(−α1 A 1 (b) + f ′ k (b) 
))

+ α1 A 1 ( b) f k ( a ) f −k ( b) 
(

f ′ k ( a ) − α0 A 0 (a ) 
)− f k ( b) f −k ( a ) 

(
f ′ k ( a ) + α0 β0 f k (a ) 

) (
α1 A 1 (b ) − f ′ k (b ) 

)
] , 

r L (k) = − 1 
ϒ(k) 

[ f −k ( b) f k ( a ) f ′ k ( a )( −α1 A 

∗
1 ( b) + f ′ −k (b)) + α0 β0 f 2 −k ( a )( − f −k ( b) f ′ k ( b) + α1 f k ( b) A 

∗
1 ( b)) 

+ f −k (a )[ f −k (b) α0 A 0 (a )(α1 A 

∗
1 (b) − f ′ −k (b)) + (−1 + α2 

0 ) f 
′ 
−k (a )(−α1 f k (b ) A 

∗
1 (b ) + f ′ k (b ) f −k (b ))]] , 

B R 

(k) = 

1 
ϒ(k) 

[ α0 W 

(
f k ( b) f ′ −k ( b) − α1 A 1 ( b) f −k ( b) 

)
] , 

B L (k) = − 1 
ϒ(k) 

[ α1 W f −k (a ) 
(

f ′ −k (a ) − α0 A 

∗
0 (a ) 

)
] , 

C R 

(k) = − 1 
ϒ(k) 

[ α0 W f k (b) 
(

f ′ k (b) − α1 A 1 (b) 
)
] , 

C L (k) = − 1 
ϒ(k) 

[ α1 W 

(
α0 A 0 ( a ) f −k ( a ) − f k ( a ) f ′ −k ( a ) 

)
] , 

ϒ(k) = − (
α0 A 

∗
0 (a ) − f ′ −k (a ) 

) [
f k ( b) 

(
f −k ( a ) 

(
α1 A 1 (b) − f ′ k (b) 

)+ f k ( a ) f ′ −k ( b) 
)− α1 A 1 ( b) f k ( a ) f −k ( b) 

]
+ α2 

0 W 

(
f k ( b) f ′ −k ( b) − α1 A 1 ( b) f −k ( b) 

)
. (A2) 

The notations A i (z ) = −βi f k (z ) + αi f ′ k (z ) , together with W = −2 ik ( k 

2 + 1), have been used
to simplify the expressions. 

Notice that the denominator of all the scattering parameters, ϒ( k ), is the Jost function. The
spectral or Jost function is widely used in the literature [ 56–60 ] because of its connection to
the denominator of the scattering coefficients. Notice that the Jost function j ( k ) is related to
the S -matrix by means of det S = t 2 (k) − r R 

(k ) r L 

(k ) = e i2 δ(k) = j ∗(k ) / j(k ) . It should be high-
lighted that the phase shift in the scattering problem is just minus the phase of the Jost func-
tion. Furthermore, the zeroes of the Jost function on the positi v e imaginary axis of the comple x
momentum plane characterize the wave vector of the bound states in the quantum mechanical
problem. Consequently, the Jost function determines both the spectrum and the phase shift of 
the scattering pr oblem. Fr om the last expression of ϒ in Eq. ( A2 ), taking ϒ(iκ ) = 0 , κ > 0 ,
and with a little bit of algebra, one could separate those terms involving an exponential from
those with polynomials, obtaining the result gi v en on page 5 [Eqs. ( 10 ) and ( 11 )]. 

The Green’s function of the associated QFT can be expressed in a compact way as 

G k (z 1 , z 2 ) = G 

PT 
k (z 1 , z 2 ) + �G k (z 1 , z 2 ) , (A3) 
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with �G k ( z 1 , z 2 ) gi v en by Eq. ( A4 ): ⎧ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎨ 

⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎩ 

r L 

W 

f k (z 1 ) f k (z 2 ) , if z 1 , z 2 > b, 

r R 

W 

f −k (z 1 ) f −k (z 2 ) , if z 1 , z 2 < a, 

B R 

B L 

t W 

f k (z 1 ) f k (z 2 ) + 

C R 

C L 

t W 

f −k (z 1 ) f −k (z 2 ) if a < z 1 < b and a < z 2 < b, 

+ 

C R 

B L 

t W 

( f −k ( z > 

) f k ( z < 

) + f k ( z > 

) f −k ( z < 

)) , 

( t − 1) G 

PT 
k ( z 1 , z 2 ) , if z 2 > b and z 1 < a (or z 1 ↔ z 2 ) , 

( C L 

− 1) G 

PT 
k ( z 1 , z 2 ) + 

B L 

W 

f k (z 1 ) f k (z 2 ) , if z 2 > b and a < z 1 < b (or z 1 ↔ z 2 ) , 

( B R 

− 1) G 

PT 
k ( z 1 , z 2 ) + 

C R 

W 

f −k (z 1 ) f −k (z 2 ) , if z 2 < a and a < z 1 < b (or z 1 ↔ z 2 ) . 

(A4

The sca ttering da ta involved are collected in Eq. ( A2 ). The points { a , b } at which the plates are
located are completely general and can be replaced by any other pair of points, independently
of their position with respect to the origin, around which the PT kink is centered. 

A ppendix B . Proof of relation ( 51 ) 
In appendices B and C of Ref. [ 11 ] the authors prove that if the Green’s function G ( x , y ) is
smooth for x � = y , then for any two disjoint objects A , B separated by a finite distance, G 

AB 

is a trace-class operator. Moreover, T 

A and T 

B are bounded and T 

A G 

AB T 

B G 

BA is a trace-class
operator. They also prove that the modulus of the eigenvalues of T 

A G 

AB T 

B G 

BA is less than one.
The aim of this appendix is to demonstrate that 

tr log (1 − T GT G) = log det (1 − T GT G) ≈ log (1 − tr T GT G) (B1) 

is satisfied whene v er ther e ar e two separate objects in a weak curved background for which
the aforementioned hypothesis for the TGTG operator is satisfied, and rank (T GT G) � = 1 is
fulfilled. 

The first equality in Eq. ( B1 ) is general, and it can be proven by taking into account that any
Hermitian matrix P r epr esenting an Hermitian operator can be transformed into a diagonal
matrix P D 

, so that P D 

= QPQ 

−1 . In this way, 

e tr log P = e tr log (Q 

−1 P D 

Q ) = e tr [ Q 

−1 ( log P D 

) Q ] = e tr log P D = e 
∑ 

i log λi 

= 

∏ 

i 

λi = det P D 

= det (QP Q 

−1 ) = det P. (B2) 

The cyclic property of the trace has been used above. The eigenvalues of the diagonal matrix
P D 

have been denoted by λi . On the other hand, if αi are the eigenvalues of M = TGTG , it is
easy to prove the second claim in Eq. ( B1 ), because 

log det (1 − M ) = log det [ Q 

−1 
1 (1 − M D 

) Q 1 ] = log 

∏ 

i 

(1 − αi ) = log [1 −
∑ 

i 

αi + o(αi α j )] 

≈ log [1 − tr M D 

] = log [1 − tr (Q 1 MQ 

−1 
1 )] = log [1 − tr M] . (B3) 

This constitutes a good approximation up to the first order since the norm of M is less than
one. 
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In some r efer ences, another approach to understand the approximate computation can be
found. If we consider dielectrics instead of the vacuum, if the dielectric function can be written
as 1 + x with x being small (i.e., the dilute limit), || TGTG || < 1, and one could make the formal
expansion of log (1 − x ) to finally write 

log det (1 − T GT G) = −
∑ 

j 

1 

j 
Tr (T GT G) j (B4) 

(this is done in section V of the seminal paper by Kenneth and Klich [ 11 ] and in section 4.1 of 
Ref. [ 15 ]). In this last article, figure 4 shows the numerical difference between the contribution of 
the integral ( 36 ) for j = 1 and j = 2. As can be seen in the left-hand plot of the figure, considering
Tr (T GT G) 2 gi v es a result numericall y m uch smaller than the one involving Tr (T GT G) , so we
can neglect it and still obtain a good approximation for the quantum vacuum correction to the
Casimir energy up to the first order in � . These types of approximations are widely used in the
literature, for instance in Refs. [ 16 , 54 ]. 

There is another important detail to be considered. Notice that 

tr log (1 − T GT G) = log det (1 − T GT G) = c T GT G 

(1) (B5) 

is always fulfilled. c TGTG 

(1) is the characteristic polynomial of the matrix r epr esenting the op-
erator TGTG . This polynomial can be expressed in terms of the trace of the operator itself and
the trace of matrices gi v en by products of a finite number of times the operator, as 

c T GT G (1) = 1 + 

n ∑ 

k=1 

(−1) k 

k! 

∣∣∣∣∣∣∣∣∣∣∣

tr T GT G 1 0 0 . . . 0 
tr (T GT G) 2 tr (T GT G) 2 0 . . . 0 

. . . 
. . . 

tr (T GT G) k−1 tr (T GT G) k−2 tr (T GT G) k−3 tr (T GT G) k−4 . . . k − 1 
tr (T GT G) k tr (T GT G) k−1 tr (T GT G) k−2 tr (T GT G) k−3 . . . tr T GT G 

∣∣∣∣∣∣∣∣∣∣∣
. (B6) 

Thus the correct way to compute the Casimir energy between objects and obtain the exact result
when rank T GT G � = 1 is to evaluate numericall y the following w hole integral: ∫ ∞ 

m 

ξ
√ 

ξ 2 − m 

2 log det (1 − T GT G) = 

∫ ∞ 

m 

ξ
√ 

ξ 2 − m 

2 c T GT G 

(1) . (B7) 
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