
Doubly special relativity as a nonlocal quantum field theory

J. J. Relancio *

Departamento de Matemáticas y Computación, Universidad de Burgos, Plaza Misael Bañuelos, 09001, Burgos, Spain
and Centro de Astropartículas y Física de Altas Energías (CAPA), Universidad de Zaragoza,

Calle de Pedro Cerbuna, 12, 50009 Zaragoza, Spain

L. Santamaría-Sanz †

Departamento de Física, Universidad de Burgos, Plaza Misael Bañuelos, 09001 Burgos, Spain

(Received 1 April 2024; accepted 10 July 2024; published 2 October 2024)

In this work, we explore the quantum theories of the free massive scalar, the massive fermionic,
and the electromagnetic fields in a doubly special relativity scenario. This construction is based on a
geometrical interpretation of the kinematics of this kind of theory. In order to describe the modified
actions, we find that a higher (indeed infinite) derivative field theory is needed, from which the deformed
kinematics can be read. From our construction, we are able to restrict the possible models of doubly
special relativity to those that preserve linear Lorentz invariance. We quantize the theories and also obtain
a deformed version of the Maxwell equations. We analyze the electromagnetic vector potential for both
an electric pointlike source and magnetic dipole. We observe that the electric and magnetic fields do not
diverge at the origin for some models described with an anti–de Sitter momentum space, but they do for a
de Sitter space in both problems.
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I. INTRODUCTION

A quantum gravity (QG) theory, merging quantum field
theory (QFT), and general relativity (GR), has been sought
for the last few decades. While there is not currently such a
framework describing consistently both the theoretical and
phenomenological quantum effects of gravity, it is believed
that the notion of spacetime should change at small scales/
high energies. In these cases, the classical notion of
spacetime should be replaced by a quantum one, with new
consequences in the aforementioned regime. For example,
in loop quantum gravity, the structure of spacetime takes
the form of a spin foam [1,2], while in causal set theory and
string theory, a nonlocality arises [3–8].
The search for such aQG theory is highlymotivated by the

fact that GR is perturbatively nonrenormalizable [9–11].
Since loop quantum gravity, causal set theory, and string
theory lack well-defined and testable predictions, different
“top-down” approaches to a fundamental QG theory have
been considered.Onepossibility that hasbeenwidely studied

in the literature is to add new terms proportional to the
Ricci scalar in the Einstein-Hilbert action. Nevertheless,
these so-called fðRÞ theories [12] are not renormalizable. A
different possibility is to consider terms proportional to the
squared Ricci and Riemann tensors [13]. While these latter
theories are perturbatively renormalizable [14], they present
an additional massive spin-2 ghost degree of freedom,
causing the Hamiltonian to be unbounded from below,
which leads to vacuum instabilities of the physical system
and to the loss of unitarity of the QFT. It is possible
to solve this problem if, instead of considering some
terms proportional to the Ricci scalar and Ricci and
Riemann tensors, infinite derivatives of them are taken
into account [15]. Thus, nonlocal QFTs arise (note that
nonlocal QFTs have already appeared before in other
contexts [16–18]). The considered functions of the
derivatives depend only on the d’Alembertian, so covari-
ance is preserved. Some of these approaches are known as
infinite-derivative gravity (IDG) theories [19]. It is worth
mentioning that, in these theories, the gravitational
potential takes a finite value at the origin [20–25],
contrary to what happens in GR. Moreover, some recent
work in IDG even suggests that the introduction
of infinite derivative theories prevents black hole hori-
zons [26,27]. Starting from this scenario, it is possible to
construct a QFT with infinite derivatives [15,28–30].
However, there is an arbitrariness in the choice of the
functions of the derivatives. From string theory argu-
ments, this function is an exponential [31–36]; from
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causal set theory it takes a nonanalytical form [37,38],
and for other choices of IDG models, it is a polynomial in
the ultraviolet limit (see [39] and references therein).
A completely different approach was regarded in doubly/

deformed special relativity (DSR) [40–42], considered as a
low-energy limit of a QG which aims to predict phenom-
enological effects that can be detected nowadays. In this
theory, the kinematics of special relativity (SR) is deformed
by adding a high-energy scale. This usually modifies the
dispersion relation, as well as the conservation of energy
and momentum, which is normally called the composition
law of momenta. While the former do not have to be
modified, the latter must be, with this being the main
ingredient of this kind of theory. The principal feature of
DSR theories is that a relativity principle is present, so there
are some deformed Lorentz transformations making com-
patible the dispersion relation and the composition law.
There are two primary kinematical models considered in
the literature: κ-Poincaré [43] and Snyder kinematics [44].
However, instead of considering that Poincaré invariance is
deformed, a different possibility is a Lorentz invariance
violation (LIV) [45,46], where there is not a relativity
principle, meaning that the laws of physics depend on the
observer. In this scenario, there is a modification of the
dispersion relation, but not of the momentum conservation
laws. As discussed in [47,48], the phenomenologies of the
two theories are quite different.
Since DSR started to be considered at the beginning of

this century, there are some topics that are not fully
developed. In particular, there are only a few proposals
to consider the electromagnetic (EM) interaction in this
scheme [49,50], compared with the more vast literature in
the LIV scenario [51–57]. Moreover, while there is an
effective field theory in LIV, known as standard model
extension [45], the complete formulation of a QFT in DSR
is still missing, although there are several works in the
literature trying to develop it [58–72]. In another vein, more
efforts in DSR were focused on understanding the relation-
ship between this kind of theory and a curved momentum
space1 [74–80] (see [81–84] for the LIV geometrical
description). In the previous literature on the topic, it is
not clear how to relate in a simple way the composition of
momenta with such momentum-dependent metrics. A
different point of view was developed in [85], finding that
both the Lorentz transformations and the composition law
must be isometries of the momentum metric in order to
have a relativity principle. Since four conservation laws for
the momenta as well as Lorentz invariance are required to
describe a relativistic kinematics, a maximally symmetric
momentum space is needed. From this construction, both

κ-Poincaré and Snyder kinematics can be easily obtained.
Based on this last geometrical setup, in [86] an approach to
a QFT in DSR, fully described in momentum space, was
proposed. It is important to mention that the results
obtained for the Dirac equation in that paper coincide with
those of [87], derived from an algebraic point of view.
The aim of this work is to translate and extend the results

obtained in [86] for position space. Interestingly, we find an
infinite-derivative (and therefore nonlocal) field theory. In
doing so, we are able to restrict the possible models of
DSR. In particular, we find that the proposed model
restricts the possible kinematics to those with a linear
Lorentz invariance—i.e., Snyder models, with the Casimir
being a function of the squared momentum. While there are
several (indeed infinite) choices of metrics in momentum
space satisfying this property, we will focus on a very
particular one obtained in [88,89] from geometrical argu-
ments. This does not imply, however, a total restriction on
kinematics different from those of Snyder’s models, which
could be allowed in different proposals not considered here.
Notice that for κ-Poincare kinematics in DSR, there exist
bases for which linear Lorentz invariance is preserved at the
level of single particles, while in other bases it is not.
However, for a multiparticle system, linear Lorentz invari-
ance is never preserved for these kinematics, whatever
basis one works on (see, for instance, [90]). Regarding
Snyder kinematics, all the considered bases possess linear
Lorentz invariance for both single- and multiparticle
systems (see [44]). So, the preservation of linear Lorentz
invariance is not a restriction on DSR. As we will see in
Sec. III, we are imposing from the beginning that our model
preserves linear Lorentz invariance at the single-particle
level (where the Minkowski metric is present). Moreover,
a compatibility condition of the Klein-Gordon equation
will impose that linear Lorentz invariance must be
preserved for multiparticle systems. This is also interest-
ing, because in this way, the one-particle results would be
compatible with the algebraic scheme (see the discussion
of [86]), and because this could allow one to extend this
work to a QFT considering multiple particle interactions
too. Hence, our particular model is only compatible with
Snyder kinematics. However, this does not mean that
different models could be constructed in a compatible way
with κ-Poincaré.
Moreover, we also consider the EM Lagrangian in our

construction of DSR QFT with infinite derivatives.2 From
here, we are able to describe the electric and magnetic
potentials of a point charge and a magnetic dipole,
respectively. We find that both potentials are finite at the
origin (which is the case of the aforementioned IDG
theories for the gravitational potential) only for the anti–
de Sitter (AdS) model, seeming to privilege it with respect

1The idea of a curved momentum space was first considered by
Born [73] in the 1930s as a way to avoid the ultraviolet
divergences in QFT. Due to the success of renormalization, this
idea was forgotten until some years ago, when it was considered
as a possible path to quantum gravity.

2See [91] for a modification of the electric potential by
considering a higher- (finite-) derivative EM Lagrangian.
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to de Sitter (dS) space.3 This coincides with the results
of [92,93], where the symmetries of a curved AdS
momentum space, including a deformed composition of
momenta, were obtained from a QG in 2þ 1 dimensions
coupled to pointlike matter [92,93].
The structure of the paper is as follows. In Sec. II, we

review the main results of [86], building up the base of our
description of QFT in DSR in position space, which will be
carried out in Sec. III. We also show how our scheme can
accommodate the field theories considered from string
and causal set scenarios. In Secs. IV and V, we study the
Klein-Gordon and Dirac equations, respectively, and their
conserved energy-momentum tensors. From the former
equation, we find that in order for the dispersion relation
to hold, the only kinds of kinematics allowed in this
scheme are Snyder models. In Sec. VI, we describe the
EM interactions, writing the modified Maxwell equations,
and obtaining the electric andmagnetic vector potentials of a
point charge and amagnetic dipole, respectively. Finally, we
end with our conclusions and future prospects in Sec. VII.

II. REVISITING DSR QFT
IN MOMENTUM SPACE

Since [86] is inspired by previous works about geomet-
rical interpretations of DSR, we start by reviewing the
necessary foundations of the geometry of curved momen-
tum spaces and their connection to relativistic deformed
kinematics. In [85], it was shown that all the ingredients of
a relativistic deformed kinematics can be obtained from a
maximally symmetric momentum space. These core con-
cepts are the deformed dispersion relation and the deformed
composition law of momenta. The former establishes a
relationship between the energy, momentum, and mass of a
particle, and it can be identified with the squared distance in
momentum space. The latter describes the total momentum
of a system of particles (which is no longer the sum of
momenta but a nonlinear function of them), and it can be
obtained from translations in a curved momentum space.
Another crucial fact is that some Lorentz transformations
(isometries of the maximally symmetric momentum space)
make compatible the two previous ingredients, imposing
then a relativity principle. These transformations, together
with the deformed composition law, establish a clear
difference between DSR models and LIV theories.
In [94], it was shown that the following relation between

the metric and the Casimir4 (regarding it as the squared
distance in momentum space) holds:

1

4

∂CðpÞ
∂pμ

gμνðpÞ
∂CðpÞ
∂pν

¼ CðpÞ; ð1Þ

where one can define [86]

fμðpÞ ≔ 1

2

∂CðpÞ
∂pμ

: ð2Þ

For SR, the previous equation reduces to the well-known
relation CðpÞ ¼ pμη

μνpν ¼ m2, where here and in the
following we consider η ¼ diagð1;−1;−1;−1Þ. In this
way, the dispersion relation in the theory can be written
as CðpÞ −m2 ¼ 0.
The Klein-Gordon and Dirac actions in the momentum

space in DSR are given by

SKG ≔
Z

d4p
ffiffiffiffiffiffiffiffiffiffiffiffiffi
−gðpÞ

p
ϕ̃�ðpÞðCðpÞ −m2Þϕ̃ðpÞ; ð3Þ

SDirac ≔
Z

d4p
ffiffiffiffiffiffiffiffiffiffiffiffiffi
−gðpÞ

p
ψ̃ð−pÞ

×
�
γμημρeρνðpÞfνðpÞ −m

�
ψ̃ðpÞ; ð4Þ

with ϕ̃ðpÞ and ψ̃ðpÞ being the Fourier transforms
of the scalar and fermionic fields, γμ the usual Dirac
matrices in SR, and eμνðpÞ the tetrad in momentum
space, which is related to the metric by means of
gμνðpÞ ¼ eρμðpÞηρσeσνðpÞ. Given a composition law ⊕,
the tetrad can be determined in the following way [85]:

eμνðpÞ ≔
∂ðp ⊕ qÞν

∂qμ

����
q→0

: ð5Þ

In this way, different kinematics obtained from the same
metric lead to different tetrads, and hence, to different field
theories [86].

III. TOWARD A DSR QFT
IN POSITION SPACE

In this section, we discuss how to consider the QFT in
position space corresponding to the momentum space
version in the previous section. We also discuss the possible
momentum metrics allowed in our scheme, and how this
scheme can accommodate the nonlocal field theories
obtained from string and causal set theories.

A. Construction of our approach

In order to generalize QFT so that DSR deformed
symmetries are taken into account, our proposed construc-
tion is to replace the usual derivatives in QFT with a
function of them that takes into account the curvature in
momentum space, so the deformed dispersion relation is
satisfied. Thus, we consider the following action for scalar
fields (see the fermionic version in Sec. V):

3Note that whenever we refer to dS or AdS models, we are
dealing with curved momentum spaces.

4A Casimir operator is an operator which is not identical to the
unit operator and which commutes with all group elements [95].
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S¼
Z

d4x
1

2
f−lμð−i∂xÞϕðxÞημνlνð−i∂xÞϕðxÞ−m2ϕ2ðxÞg;

ð6Þ

where

lμð−i∂xÞ ¼ eμνðpÞfνðpÞjp→−i∂x : ð7Þ

This modification leads to a nonlocal QFT, since an
infinite number of derivatives act on the fields. Moreover,
linear Lorentz invariance is preserved. This restricts the
possible bases of kinematics to those whose dispersion
relation is a quadratic expression on the momentum, so
that5

fμðpÞ ¼ 1

2

∂p2

∂pμ

∂CðpÞ
∂p2

¼ pμ ∂CðpÞ
∂p2

≔ pμhðp2Þ: ð8Þ

Notice that having a relativity principle implies that Lorentz
transformations and the composition law must be isome-
tries of the momentum metric. This happens whenever the
metric is of the form

gμνðpÞ ¼ ημνΘ1ðp2Þ þ pμpν

Λ2
Θ2ðp2Þ; ð9Þ

where Λ is the high-energy scale. This kind of metric was
also found to be privileged from a geometrical point of
view when a curvature in both momentum space and
spacetime is considered [88,96]. There are different
(indeed, infinite) choices of momentum metrics that pos-
sess linear Lorentz transformations as isometries. In the
next subsection, we discuss some particular options.
But before going on, we would like to discuss the

differences and similarities between our approach and that
of [97,98]. In these works, starting from a particular
deformeduncertainty relation, the authors define a deformed
momentum operator. This operator, which is a nonlinear
function of the usual momentum, is used to replace the
derivatives in the associated QFT. Then, a higher-derivative
QFT is constructed in this way. In our approach, the starting
point is ametric inmomentum space, and from it we derive a
lμ operator, which replaces the usual momentum operator.
While we can redefine this operator to obtain some desired
deformed uncertainty relations, it is more difficult to obtain
the specific choice of metric which leads to the uncertainty
relations of [97,98]. This fact could constitute an obstacle
whenever one wants to consider a deformed kinematics in
the DSR context. Nevertheless, the connection between the
two approaches opens a new line of research, whichwe hope
to deepen in the future.

B. Possible choice of metrics

As mentioned in the Introduction, a nonlocal action in
QFT was obtained from string theory. In particular, the
interaction terms involving infinite derivatives are of the
form [31–36]

VðϕÞ ∼ ðe−α□Þ3; ð10Þ

where □ ¼ ∂
μ
∂μ as usual, and α is a constant which

depends on whether the string is open or closed, and on
the Regge slope. Inspired by this theory, several works of
IDG and nonlocal QFTarose [20,22–24,29]. They consider
the action in Eq. (6) together with the choice

Cð−i∂xÞ ¼ −□e□=Λ2

; ð11Þ

or, equivalently,

CðpÞ ¼ p2e−p
2=Λ2

: ð12Þ

Let us see how this proposal for the Casimir operator can be
embedded in our formalism. It can be viewed as a particular
example of our construction based on a curved momentum
space. In particular, from the condition in Eq. (1), one finds
the following relationship between the functions defining
the metric in (9):

Θ2ðp2Þ ¼ Λ2

p2

�
ep

2=Λ2Λ4

ðp2 − Λ2Þ2 − Θ1ðp2Þ
�
: ð13Þ

Imposing that the momentum metric must correspond to a
maximally symmetric space (see Appendix A), one finds
that

ΘdS
1 ðp2Þ ¼ −

p2

Λ2
sech2

 ffiffiffiffiffi
p2

p
Λ

e−p
2=Λ2

!

and ΘAdS
1 ðp2Þ ¼ p2

Λ2
sec2

 ffiffiffiffiffi
p2

p
Λ

e−p
2=Λ2

!
ð14Þ

for dS and AdS cases, respectively. As we see, the
Minkowski metric is not recovered when taking the limit
Λ → ∞. This means that the composition of momenta
cannot be written as a power-series expansion when
considering it as an isometry of the metric [85]—i.e.,
when writing

gμνðp ⊕ qÞ ¼ ∂ðp ⊕ qÞμ
∂qρ

gρσðqÞ
∂ðp ⊕ qÞν

∂qσ
; ð15Þ

making it difficult to search for phenomenological
implications.
A different choice for the Casimir operator could be the

one obtained in causal set theory [37,38], whose expression

5In the following, for alleviating the notation, when functions
are expressed in terms of p2, we mean p2=Λ2, for dimensional
reasons.

J. J. RELANCIO and L. SANTAMARÍA-SANZ PHYS. REV. D 110, 086004 (2024)

086004-4



at lower orders in Λ is given by

Cð−i∂xÞ¼−□−
3

2π
ffiffiffi
6

p □
2

Λ2

�
3γ−2þ ln

�
3□2

2πΛ4

��
þ��� ;

ð16Þ

with γ being the Euler-Mascheroni constant. In this case,
one could obtain also the function Θ2, which defines the
metric, but only order by order, since this expression is not
analytic. But since it is possible to obtain the associated
metric and impose that it is maximally symmetric even if it
is order by order, in principle it can be a viable choice for
our construction.
In the following, we will focus on a very particular case,

in which the maximally symmetric momentum metric is
conformally Minkowski [88,89]:

gμνðpÞ ¼ ημν

�
1� p2

4Λ2

�
2

; ð17Þ

where the plus sign stands for AdS, and the minus for dS.
This metric was obtained from geometrical considerations
inside the DSR scheme when a curvature in spacetime
was also considered, being hugely special due to its
conformal form. Due to the arbitrariness present in our
construction, we will develop the QFT with this metric
[although we compare some results with the Casimir of
IDG in Eq. (11)]. It could be the case that, by extending
our proposal to curved spacetimes in future works, the
previous metric appears to be privileged, as it is in the
geometrical setup.
In the next few sections, we will consider (17), together

with the QFT scheme described in Sec. III A, in order to
generalize the Klein-Gordon, Dirac, and electromagnetic
Lagrangians.

IV. KLEIN-GORDON EQUATION

In this section, we start by considering the Klein-
Gordon equation in position space. While it could seem
very naive and trivial, we find several interesting results.
From the action in position space, we conclude that the
only way in which the Klein-Gordon equation can be
obtained in our scheme is by selecting Snyder models over
κ-Poincaré kinematics. Moreover, we study the conserved
quantities associated with this equation, finding a defor-
mation of the usual result of QFT. Notice that in this
section we have already promoted the classical problem to
a quantum one. Consequently, now the momentum p must
be treated as an operator p → −i∂x. We will abuse
notation by using the same letters for the quantum
variables and the classical ones, because they can be
distinguished by the context.

A. Action in position space

Consider for simplicity real scalar fields. Let us compute
the small variations of the functional (6) with respect to the
scalar field ϕ:

δSϕ ¼
Z

d4x
1

2
f−lμð−i∂xÞδϕðxÞημνlνð−i∂xÞϕðxÞ

− lμð−i∂xÞϕðxÞημνlνð−i∂xÞδϕðxÞ
− 2m2ϕðxÞδϕðxÞg: ð18Þ

Notice that by integrating by parts as follows:Z
d4x½lð−i∂xÞϕðxÞ�ψðxÞ

¼
Z

d4x

�X∞
n¼0

lðnÞð0Þ
n!

ð−i∂xÞnϕðxÞ
	
ψðxÞ

¼
X∞
n¼0

lðnÞð0Þ
n!

Z
d4x½ð−i∂xÞnϕðxÞ�ψðxÞ

¼
X∞
n¼0

lðnÞð0Þ
n!

Z
d4xϕðxÞ½ði∂xÞnψðxÞ�

¼
Z

d4xϕðxÞ½lði∂xÞψðxÞ�; ð19Þ

we can rewrite (18) as

δS¼
Z

d4x
1

2
f−δϕðxÞlμði∂xÞlμð−i∂xÞϕðxÞ

−lμði∂xÞlμð−i∂xÞϕðxÞδϕðxÞ−2m2ϕðxÞδϕðxÞg: ð20Þ
Applying the variational principle yields the equation of
motion:

ðlμði∂xÞlμð−i∂xÞ þm2ÞϕðxÞ ¼ 0: ð21Þ

The only way in which the dispersion relation
CðpÞ−m2¼0 holds is by imposing lμð−i∂xÞ¼−lμði∂xÞ.
From Eq. (8), it is easy to see that fμð−pÞ ¼ −fμðpÞ,
so eμνð−pÞ ¼ eμνðpÞ must be fulfilled. This means
that the composition law leading to the tetrad follo-
wing (5) cannot correspond to κ-Poincaré,6 leaving
only space for Snyder models. Thus, we can replace
lμð−i∂xÞ → −i∂μΩð−□Þ∶≡ −ie∂μ in the previous equa-
tions, withΩ being a function depending on the momentum
space tetrad, the function of the d’Alembertian hð−□Þ, and
the deformed dispersion relation.
Taking into account the previous notation for lμ, the

Klein-Gordon action for real fields is

6Note that the composition law in κ-Poincaré kinematics always
depends on a fixed vector nμ; see [90]. Then, the corresponding
tetrad computed throughEq. (5)will lead to eμνðn; pÞ ≠ eμνðn;−pÞ
(see a similar discussion carried out in [86]).
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S ¼
Z

d4x
1

2
f∂̃μϕðxÞ∂̃μϕðxÞ −m2ϕ2ðxÞg: ð22Þ

Notice that the Lagrangian density of a free complex scalar
field theory will be

L ¼ ∂̃
μϕ�ðxÞ∂̃μϕðxÞ −m2ϕ�ðxÞϕðxÞ: ð23Þ

From now on, we will consider the real scalar fields case for
simplicity, but the generalization to complex ones could be
performed straightforwardly.
Notice that from the metric (17), one finds the following

tetrad:

eμνðpÞ ¼ δμν

�
1� p2

4Λ2

�
; ð24Þ

where again the plus sign stands for AdS and the minus for
dS, and the dispersion relations become [88]

CdSðpÞ ¼ 4Λ2arctanh2
 ffiffiffiffiffi

p2
p
2Λ

!
¼ m2;

CAdSðpÞ ¼ 4Λ2arctan2
 ffiffiffiffiffi

p2
p
2Λ

!
¼ m2; ð25Þ

with p2 ¼ p2
0 − p⃗2. Since hðp2Þ is the derivative of the

Casimir with respect to the four-momentum squared, we
can compute the exact form of the Ω function in both
models:

lμð−i∂μÞ ¼ δμν

�
1� p2

4Λ2

�
pνhðp2Þ

����
pμ→−i∂μ

¼
�
1� p2

4Λ2

�
pμ ∂CðpÞ

∂p2

����
pμ→−i∂μ

¼ −i∂μΩðp2Þjpμ→−i∂μ ;

ΩdSð−□Þ ¼
�
1þ □

4Λ2

�
8Λ3ffiffiffiffiffiffiffiffi

−□
p ð4Λ2 þ□Þ

× arctanh

� ffiffiffiffiffiffiffiffi
−□

p

2Λ

�
; ð26Þ

ΩAdSð−□Þ¼
�
1−

□

4Λ2

�
8Λ3ffiffiffiffiffiffiffiffi

−□
p ð4Λ2−□Þarctanh

 ffiffiffiffiffiffiffiffi
−□

p

2Λ

!
:

ð27Þ

B. Energy-momentum tensor
and conserved currents

The energy-momentum tensor can be computed as [99]

Tμν ¼
2ffiffiffiffiffiffiffiffiffiffiffiffiffi

−gðxÞp δL
δgμνðxÞ : ð28Þ

Note that here, we use g for describing the metric of
spacetime (depending on spacetime coordinates), and this
should not be confused with the momentum-dependent
metric g. When taking the limit for flat spacetime—i.e.,
gμνðxÞ → ημν—we are able to find the energy-momentum
tensor for our theory. Indeed, we obtain the usual con-
servation law of this tensor:

∂
μTμν ¼ 0: ð29Þ

When considering the Lagrangian density of the
action (6), one finds (see Appendix B)

Tμν ¼ ∂̃μϕ∂̃νϕ −
1

2
ημν


∂̃
ρϕðxÞ∂̃ρϕðxÞ −m2ϕ2ðxÞ�: ð30Þ

From this expression, it is easy to check that the con-
servation law (29) is satisfied.
A simple way to define the Fourier transform of the field

in terms of annihilation and creation operators, as in usual
QFT [100] and in high-derivative theories [29], is

ϕðxÞ ¼
Z

d3p
ð2πÞ3 ffiffiffiffiffiffiffiffi

2p0

p ðape−ixλpλ þ a†peix
λpλÞ: ð31Þ

Using the definition of Eq. (31) in Eq. (30), and after a
little algebra, one can obtain the conserved currents, which
are (see Appendix B)

T0μ ¼
sðm2Þ
2

Z
d3p
ð2πÞ3 pμða†pap þ apa

†
pÞ: ð32Þ

Notice that sðm2Þ ¼ ΩðC−1ðm2ÞÞ is a function of the mass,
which depends on the model considered and its Casimir.
We find that the energy and the momenta are conserved.
Moreover, instead of using (31), one can introduce a
normalization factor

ϕðxÞ ¼
Z

d3p

ð2πÞ3
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2sðm2Þp0

p ðape−ixλpλ þ a†peix
λpλÞ; ð33Þ

so the conserved currents are the same of those of standard
QFT:

T0μ ¼
1

2

Z
d3p
ð2πÞ3 pμða†pap þ apa

†
pÞ: ð34Þ

V. DIRAC EQUATION

In this section, we discuss theDirac equation in spacetime,
computing the corresponding energy-momentum tensor.
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A. Derivation from an action

Consider the following action for fermionic fields:

S ¼
Z

d4xψ̄ðxÞ�−γμημνlνð−i∂xÞ −m
�
ψðxÞ ¼

Z
d4xψ̄ðxÞðiγμ∂̃μ −mÞψðxÞ: ð35Þ

Computing variations, and using (19) together with ψ̄ðxÞ ¼ ψ†ðxÞγ0, one obtains

δSψ ¼
Z

d4xfδψ̄ðxÞð−γμlμð−i∂xÞ −mÞψðxÞ þ ψ†ðxÞγ0ð−γμlμð−i∂xÞ −mÞδψðxÞg

¼
Z

d4xfδψ̄ðxÞð−γμlμð−i∂xÞ −mÞψðxÞ þ lμði∂xÞψ†ðxÞγ0ð−γμ −mÞδψðxÞg

¼
Z

d4xfδψ̄ðxÞð−γμlμð−i∂xÞ −mÞψðxÞ þ lμði∂xÞψ†ðxÞð−γ0γμγ0 −mÞγ0δψðxÞg

¼
Z

d4xfδψ̄ðxÞð−γμlμð−i∂xÞ −mÞψðxÞ þ lμði∂xÞψ†ðxÞð−γμ† −mÞγ0δψðxÞg

¼
Z

d4x
�
δψ̄ðxÞðiγμ∂̃μ −mÞψðxÞ þ 
�iγμe∂μ −m

�
ψðxÞ�†γ0δψðxÞ; ð36Þ

where we have the same equation twice. If one considers
only the fermionic case, no restriction on the possible
kinematics is obtained from the equations arising from the
variational principle. However, since we are interested in a
full QFT, both for fermions and bosons, we will choose the
kinematics bases respecting Lorentz invariance (in particu-
lar, the Snyder models), as in the scalar case, because this is
the most restrictive case.

B. Conserved currents

We can also construct the energy-momentum tensor in
this case. As shown in [99], Eq. (28) can be rewritten in
terms of the tetrad, resulting in

Tμν ¼
eαμ

det½eðxÞ�
δL

δeν
αðxÞ

: ð37Þ

As before, the tetrad of the spacetime e (depending on
the spacetime coordinates) should not be confused with the
momentum-space tetrad e considered before. By taking
the flat spacetime limit of this expression, and plugging the
Lagrangian involved in (35) into (37), one obtains (see
Appendix B)

Tμν ¼ iψ̄ðxÞγμ∂̃νψðxÞ − ημνψ̄ðxÞðiγρ∂̃ρ −mÞψðxÞ: ð38Þ

Now, if we quantize the fermionic field as usual,

ψðxÞ ¼
Z

d3p
ð2πÞ3 ffiffiffiffiffiffiffiffi

2p0

p
X
s¼1;2

ðap;suðsÞðpÞe−ixλpλ

þ b†p;svðsÞðpÞeixλpλÞ; ð39Þ

ψ†ðxÞ ¼
Z

d3q
ð2πÞ3 ffiffiffiffiffiffiffi

2q0
p

X
r¼1;2

ðbq;rvðrÞ†ðqÞe−ixλqλ

þ a†q;ruðrÞ†ðqÞeixλqλÞ; ð40Þ

one finds the conserved quantities (see Appendix B)

Pμ ¼ sðm2Þ
Z

d3p
ð2πÞ3 pμ

X
s¼1;2

ðb†p;sbp;s þ a†p;sap;sÞ; ð41Þ

where again sðm2Þ ¼ ΩðC−1ðm2ÞÞ.

VI. ELECTROMAGNETIC LAGRANGIAN

Following the formalisms described in the Introduction,
the deformed Maxwell tensor in our DRS-QFT theory
must be

F̃μν ¼ ilμð−i∂xÞAν − ilνð−i∂xÞAμ

¼ ∂̃μAν − ∂̃νAμ ¼ Ωð−□ÞFμν; ð42Þ

with Fμν being the usual electromagnetic tensor. We see
that gauge invariance holds for the transformation given by
A0
μ ¼ Aμ þ ∂̃μθ. Then, the usual Maxwell Lagrangian is

generalized to

S ¼ −
Z

d4x
1

4
F̃μνF̃μν: ð43Þ

The associated Lagrangian can be written as
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−
1

4
F̃μνF̃μν ¼ −

1

2
ð∂̃μAν∂̃

μAν − ∂̃νAμ∂̃
μAνÞ: ð44Þ

When making small variations of the action with respect to
Aμ, one finds

ilμð−i∂xÞF̃μν ¼ ∂̃
μF̃μν ¼ 0; ð45Þ

and, when replacing (42) in the above expression together
with the Lorentz gauge ∂

μAμ ¼ 0, every component of
the electromagnetic vector satisfies the Klein-Gordon
equation, viz.

Cð−□ÞAν ¼ −□Ω2ð−□ÞAν ¼ 0: ð46Þ

Moreover, from Eq. (45), it is easy to see that the electric
and magnetic fields defined as usual, i.e.

Ei ¼ ∂0Ai − ∂iA0; Bi ¼ ϵijk∂jAk; ð47Þ

with ϵijk being the Levi-Civita tensor, leads to a defor-
mation of the Maxwell equations. For that aim, when
considering in Eq. (45) ν ¼ 0, one finds

Ω2ð−□Þ∂μð∂μA0 − ∂0AμÞ ¼ Ω2ð−□Þð∂i∂iA0 − ∂
i
∂0AiÞ

¼ −Ω2ð−□Þ∂iEi ¼ 0; ð48Þ

and for ν ¼ i,

Ω2ð−□Þ∂μð∂μAi − ∂iAμÞ
¼ Ω2ð−□Þ�∂0ð∂0Ai − ∂iA0Þ − ∂

jð∂jAi − ∂iAjÞ
�

¼ Ω2ð−□Þð∂0Ei þ ϵijk∂jBkÞ ¼ 0: ð49Þ
From the previous expressions, one can write the deformed
Maxwell equations in a vectorial form:

Ω2ð−□Þ∇ · E⃗¼ 0; Ω2ð−□Þ∇⃗× B⃗¼Ω2ð−□Þ∂0E⃗: ð50Þ

On the other hand, as in standard EM theory, one can obtain
the other two deformed Maxwell equations as before:

Ω2ð−□Þ∇⃗ · B⃗¼ 0; Ω2ð−□Þ∇⃗× E⃗¼−Ω2ð−□Þ∂0B⃗;
ð51Þ

from the dual tensor

�F̃μν ≔
1

2
ϵμνρσF̃ρσ; ð52Þ

where ϵμνρσ is the rank-4 Levi-Civita symbol. By applying
the operator Ω2ð−□Þ on the identity

∇⃗ × ð∇⃗ × E⃗Þ ¼ ∇⃗ · ð∇⃗ · E⃗Þ − ∇⃗2E⃗; ð53Þ

and taking into account Eqs. (50) and (51), one finds

Ω2ð−□Þ∇⃗ × ð∇⃗ × E⃗Þ ¼ −Ω2ð−□Þ∇⃗2E⃗;

−Ω2ð−□Þ∇⃗ × ∂0B⃗ ¼ −Ω2ð−□Þ∇⃗2E⃗;

−Ω2ð−□Þ∂0∂0E⃗ ¼ −Ω2ð−□Þ∇⃗2E⃗; ð54Þ

when a similar computation is carried out for the magnetic
field, the Klein-Gordon equations for both fields are
obtained:

Cð−□ÞE⃗ ¼ 0; Cð−□ÞB⃗ ¼ 0: ð55Þ

The electromagnetic energy-momentum tensor obtained
from (28) and (43) can be written as (see Appendix B)

Tμν ¼
1

4
ημνF̃ρσF̃ρσ þ F̃μρF̃ρ

ν: ð56Þ

The energy and the Pointing vector associated with this
energy-momentum tensor are the same as those of standard
QFT, once (55) is taken into account:

T00 ¼
1

2
ðE⃗2 þ B⃗2Þ; T0i ¼ ðE⃗ × B⃗Þi: ð57Þ

Now, we can add a minimal coupling to matter to the EM
Lagrangian, finding

SEM ¼ −
Z

d4x

�
1

4
F̃μνF̃μν þ jμAμ

�
: ð58Þ

When varying the action with respect to the electromag-
netic vector potential, one finds

−Cð−□ÞAμ ¼ jμ: ð59Þ

Moreover, it is easy to find the deformed Maxwell
equations with an external source, which are (51) together
with

Ω2ð−□Þ∇ · E⃗¼ j0; Ω2ð−□Þ∇⃗× B⃗¼Ω2ð−□Þ∂0E⃗þ j⃗:

ð60Þ

Using now Eqs. (51), (53), and (59), the Klein-Gordon
equations for the fields are obtained:

Cð−□ÞE⃗ ¼ ∇j0 þ ∂0j⃗; Cð−□ÞB⃗ ¼ −∇⃗ × j⃗: ð61Þ

A. Electric field of a point charge at the origin

We now consider the electric field of a pointlike source.
In this case, for the potential j0ðxÞ ¼ qδ3ðr⃗Þ; ji ¼ 0, the
equations of motion turn out to be exactly analytically
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solvable. The 0-component of the vector potential is the
electric scalar potential, whose Fourier transform (FT) can
be written as

A0ðr⃗Þ ¼ 1

ð2πÞ3
Z

d3kÃ0ðkÞeik⃗·r⃗: ð62Þ

Consequently, the equation of motion for this scalar field is

−Cð−□ÞA0 ¼ qδ3ðr⃗Þ;

−
1

ð2πÞ3
Z

d3kÃ0ðkÞCð−k⃗2Þeik⃗·r⃗ ¼ q
ð2πÞ3

Z
d3keik⃗·r⃗:

ð63Þ

After comparing the two sides of the equation above, it can
be seen that Ã0ðkÞ ¼ −q=Cð−k⃗2Þ. Plugging this FT com-
ponent into the definition of the field (62) and integrating in
spherical coordinates yields

A0ðrÞ ¼ −
q

ð2πÞ3
Z

d3keik⃗·r⃗

Cð−k⃗2Þ

¼ −
q

ð2πÞ3
Z

2π

0

Z
π

0

Z
∞

0

k2sin2θdkdθdφ

Cð−k⃗2Þ
eikr cos θ

¼ −
q

ð2πÞ2
Z

∞

0

dk k2

Cð−k⃗2Þ

Z
1

−1
du eikru

¼ −
q
2π2

Z
∞

0

dk
k2

Cð−k⃗2Þ
sinðkrÞ
kr

: ð64Þ

In [101], it is shown that the electric scalar potential is
constant for the AdS scenario and divergent for the dS one
when r → 0. This behavior can also be seen in Fig. 1,
where we have compared the A0ðrÞ obtained from (25) with
the value arising when considering the Casimir operators of
the classical basis of the Snyder model in the Maggiore
representation [86]:

CdS2ð−p⃗2Þ ¼ −Λ2arcsinh2
 ffiffiffiffiffi

p⃗2
p
Λ

!
;

CAdS2ð−p⃗2Þ ¼ −Λ2arcsin2
 ffiffiffiffiffi

p⃗2
p
Λ

!
: ð65Þ

In addition, whenever one chooses C ¼ e−∇2=Λ2∇2, the
electric potential is given by

A0
IDGðrÞ ¼

q
2π2

Z
∞

0

dk
sinðkrÞ
kr ek

2=Λ2 ¼
q
4π

Er f

�
r
2

�
; ð66Þ

with Er f being the error function. The behavior of this last
electric scalar potential at r → 0 is analogous to that of the
AdS scenario, as shown in [101].
Concerning the electric field, it can be obtained by means

of E⃗ ¼ −∇⃗A0ðrÞ, i.e.,

E⃗ ¼ q
2π2

Z
∞

0

dk
k2

Cð−k⃗2Þ
kr cosðkrÞ − sinðkrÞ

kr2
u⃗r: ð67Þ

An important conclusion that can be easily checked is that
the electric field does not diverge at r → 0 for the AdS and
IDG models but does for the dS ones. As discussed in
Sec. III B, the operator of IDG is not compatible with a
composition law such that, when making a series power
expansion in Λ, the zeroth-order term corresponds to the
usual sum of momenta. This means that it should not be
considered within our model, since we want to recover the
special relativistic case when Λ → ∞. However, this does
not mean that there are no different constructions for which
IDG is valid. Moreover, from a mathematical point of view,
in order to compute the electromagnetic potentials in
Eq. (64), one only needs a Casimir, independently of the
form of the metric (and its corresponding composition of
momenta) and its physical implications. Therefore, we have
also computed the IDG case (which is well known in the
literature and shows a finite behavior of potentials at the
origin of coordinates) in order to compare this result with
the proposed Casimirs allowed in our construction.

B. Magnetic field of a magnetic moment
at the origin

If one considers a static magnetic moment m⃗ localized

at the origin [102], i.e., j0ðxÞ ¼ 0; j⃗ ¼ −m⃗ × ∇⃗δ3ðr⃗Þ, the
i-components of the vector potential constitute the mag-
netic vector potential, whose Fourier transform can be
written as

A⃗ðr⃗Þ ¼ 1

ð2πÞ3
Z

d3k ˜A⃗ðkÞeik⃗·r⃗: ð68Þ

Now, Eq. (59) turns into
FIG. 1. Electric scalar potential A0ðrÞ as a function of the radius
r for different de Sitter and anti–de Sitter models and q ¼ Λ ¼ 1.
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−Cð∇2ÞA⃗ðr⃗Þ ¼ −m⃗ × ∇⃗δ3ðr⃗Þ ¼ ∇⃗ × m⃗δ3ðr⃗Þ: ð69Þ
From here, the Fourier transform of the magnetic vector
potential can be obtained:

−Cð∇2ÞA⃗ðrÞ¼ ∇⃗× m⃗δ3ðr⃗Þ;

−
1

ð2πÞ3
Z

d3k ˜⃗AðkÞCð−k⃗2Þeik⃗·r⃗¼ ∇⃗×
m⃗

ð2πÞ3
Z

d3keik⃗·r⃗

¼ 1

ð2πÞ3
Z

d3k∇⃗× ðm⃗eik⃗·r⃗Þ:

ð70Þ

Consequently,

˜A⃗ðkÞ ¼ −
eik⃗·r⃗

Cð−k⃗2Þ
∇⃗ × ðm⃗eik⃗·r⃗Þ: ð71Þ

The magnetic vector potential is thus

A⃗ðrÞ ¼ −
1

ð2πÞ3
Z

d3k

Cð−k⃗2Þ
∇⃗ × ðm⃗eik⃗·r⃗Þ

¼ m⃗
ð2πÞ3 ×

Z
d3k

Cð−k⃗2Þ
∇⃗eik⃗·r⃗ ¼ m⃗

ð2πÞ2

× ∇⃗
Z

π

0

Z
∞

0

k2 sin θdθdk

Cð−k⃗2Þ
eikr cos θ

¼ m⃗
2π2

× ∇⃗
Z

∞

0

k2dk

Cð−k⃗2Þ
2 sinðkrÞ

kr

¼ m⃗ ×
r⃗

2π2r3

Z
∞

0

k dk

Cð−k⃗2Þ
�
kr cosðkrÞ − sinðkrÞ�

≔ m⃗ × ½r⃗fðrÞ�: ð72Þ

It is straightforward to see from here that the magnetic
vector potential for AdS is zero in the limit r → 0 (see
Fig. 2). This feature also applies for the IDG model
considered in (66). The only difference between the two

models is the numerical value obtained for A⃗ðrÞ, although
the order of magnitude remains the same. On the
contrary, the magnetic vector potential diverges at the
origin for the undeformed model (i.e., Minkowski space-
time), as well as for the dS case. It is easy to check that
for higher values of the distance to the origin, all the
models (dS, AdS, and IDG) recover the characteristic
behavior of the Minkowski space (see Fig. 3), in which
the vector potential becomes zero at a large distance from
the origin.

In order to compute the magnetic field B⃗ ¼ ∇⃗ × A⃗ðrÞ,
one basically needs to calculate the rotational of the
magnetic vector potential. In this way,

∇⃗× A⃗ðrÞ¼ ∇⃗×


m⃗×

�
r⃗fðrÞ��

¼ m⃗∇⃗�r⃗fðrÞ�−�m⃗∇⃗��r⃗fðrÞ�
¼ m⃗

1

r2
∂r

�
r3fðrÞ�−mr∂r

�
rfðrÞ�u⃗r−mθfðrÞu⃗θ

−mφfðrÞu⃗φ ¼ m⃗
�
2fðrÞþ r∂rfðrÞ

�
−
m⃗ r⃗
r
∂rfðrÞr⃗: ð73Þ

Similarly to what happens when evaluating the electric field
of a point charge when approaching the origin, the
magnetic field goes to zero for the AdS and IDG models
but diverges for the dS one.

FIG. 2. Magnetic vector potential A⃗ðrÞ for m⃗ ¼ ð0; 0; 1Þ andΛ ¼ 1 in the AdS (left) andMinkowski (right) models for small values of r.
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VII. CONCLUSIONS AND OUTLOOK

In this work, we make a new proposal for considering
QFT in DSR theories. This construction is built upon a
geometrical setup used in a previous work regarding QFT in
momentum space. Here, we discuss how this formalism can
be translated to position space. This leads to a nonlocal QFT,
since infinite derivatives of the fields appear. Furthermore,
we show that any nonlocal QFT can in principle be
embedded in our scheme, showing explicitly how to do
so for the particular example considered in string theory.
In our construction of QFT, we find that not every basis

of DSR kinematics is allowed, but only those with a
dispersion relation which is a function of the momentum
squared. Moreover, when deriving the Klein-Gordon equa-
tion, we also find that only Snyder kinematics can be
considered, impeding us from working in κ-Poincaré
models. We have also generalized the Dirac equation
and the electromagnetic Lagrangian within our scheme.
Due to the arbitrariness present in our theory (there are

infinite Snyder models), we limit ourselves to a particular
basis previously considered in the literature as privileged by
a geometrical argument. The corresponding metric is
conformally Minkowski, and the only possible arbitrariness
comes down to whether we consider a de Sitter or anti–de
Sitter momentum space. For both models, we are able to
compute the electric and magnetic fields produced by a
charged point particle and a magnetic dipole, respectively.
We find that only for AdS the potentials do not diverge at
zero, privileging this metric over dS, since nonlocal
theories are considered as models that regularize this kind
of divergence. Our finding is in agreement with previous
results in the literature claiming that a quantum gravity
theory in 2þ 1 dimensions has the symmetries of an AdS
momentum space.

Since the electromagnetic and gravitational potentials are
computed in a similar way, the gravitational field of a
pointlike mass will present the same regular behavior at the
origin. Therefore, if one were to calculate the gravitational
potential, one would also find that it does not diverge at the
origin. This means that our construction of a QFT from a
geometrical setup is also a good candidate for a nonlocal
theory of gravity and should also be considered as a
different possible and interesting model. The extension
of our proposal for considering gravity will be carried out in
a future work. Moreover, as commented before, it could be
the case that this extension explicitly shows that our choice
of metric is privileged over other metrics, as is the case in
previous works in the literature regarding DSR in curved
spacetimes.
Finally, we would like to point out some caveats about

phenomenology. DSR was developed as a low-energy limit
of a QG theory with phenomenological implications. These
possible effects were looked for from astrophysical impli-
cations, since very high energies should be reached in order
for these quantum gravity corrections to appear. The
perspective proposed in this work opens a new phenom-
enology based on tabletop experiments (see also [103] for
other proposals of experiments using slow atoms). For
example, in [104,105] it was shown that the deformed
dispersion relation considered in causal set theory leads to a
modified Schrödinger evolution in the nonrelativistic limit.
This leads to a very characteristic effect that cannot be
generated by the environment, so in principle it can be
tested in the laboratory. Therefore, this work opens a new
branch of phenomenology of DSR at low energies that
could also be tested, and used to restrict the high-energy
scale depicting the model, in a parallel way to astrophysical
experiments.

FIG. 3. Magnetic vector potential A⃗ðrÞ for m⃗ ¼ ð0; 0; 1Þ andΛ ¼ 1 in theAdS (left) andMinkowski (right)models for higher values of r.
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APPENDIX A: SCALAR OF CURVATURE
OF THE MOMENTUM SPACE

In this appendix, we show how to obtain the functions
defining the metric for the Casimir of IDG.We start with the
definition of the curvature tensor in momentum space [106]:

SσμνρðpÞ ¼
∂Cμν

σ ðpÞ
∂pρ

−
∂Cμρ

σ ðpÞ
∂pν

þ Cλν
σ ðpÞCμρ

λ ðpÞ

− Cλρ
σ ðpÞCμν

λ ðpÞ; ðA1Þ

where

Cμν
ρ ðpÞ ¼ 1

2
gρσðpÞ

�
∂gσνðpÞ
∂pμ

þ ∂gσμðpÞ
∂pν

−
∂gμνðpÞ
∂pσ

�
ðA2Þ

is the momentum affine connection. Since it it a maximally
symmetric space, the following equation holds:

SτμνρðpÞ ¼ � 1

Λ2
ðgτνðpÞgκμðpÞ − gτκðpÞgμνðpÞÞ; ðA3Þ

where the positive sign is for dS and the negative one for
AdS. While this expression was obtained for spacetime

metrics [107], it is easy to check that it also holds for
momentum-space metrics.
By substituting the relationship between the functions

defining the metric obtained in Eq. (13), and using
Eq. (A3), one finally obtains a set of differential equations
of second order in Θ1. These can be easily solved, leading
to the expressions in Eq. (14).

APPENDIX B: ENERGY MOMENTUM TENSOR
AND CONSERVED CURRENTS

1. Scalar field theory

The Lagrangian for scalar fields with a generic metric is
given by

L ¼
ffiffiffiffiffiffiffi−gp
2

ð∂̃μϕðxÞgμνðxÞ∂̃νϕðxÞ −m2ϕ2ðxÞÞ: ðB1Þ

Performing small variations of the action with respect to g,
one obtains

δL ¼ −
1

2

ffiffiffiffiffiffiffi
−g

p
2

gμνðxÞδgμνðxÞð∂̃ρϕðxÞgρσðxÞ∂̃σϕðxÞ

−m2ϕ2ðxÞÞ þ
ffiffiffiffiffiffiffi−gp
2

∂̃μϕðxÞδgμνðxÞ∂̃νϕðxÞ; ðB2Þ

where we have used [99]

δ
ffiffiffiffiffiffiffi
−g

p ¼ −
1

2

ffiffiffiffiffiffiffi
−g

p
gμνδgμν: ðB3Þ

Consequently, the energy-momentum tensor can be
written as

Tμν ¼
2ffiffiffiffiffiffiffi−gp δL

δgμνðxÞ
����
gμν→ημν

¼
�
−
1

2
gμνðxÞ

�
∂̃ρϕðxÞgρσðxÞ∂̃σϕðxÞ −m2ϕ2ðxÞ�þ ∂̃μϕðxÞ∂̃νϕðxÞ

	����
gμν→ημν

¼ ∂̃μϕðxÞ∂̃νϕðxÞ −
1

2
ημνðxÞ

�
∂̃
σϕðxÞ∂̃σϕðxÞ −m2ϕ2ðxÞ�: ðB4Þ

From here, the conserved quantities can be computed. If one replaces

ϕðxÞ ¼
Z

d3p
ð2πÞ3 ffiffiffiffiffi

p0
p ðape−ixλpλ þ a†peix

λpλÞ ðB5Þ

in the expression for T0μ, one obtains

Pμ ¼
Z

d3xT0μ ¼ −
Z

d3p
ð2πÞ3 ffiffiffiffiffi

p0
p d3q

ð2πÞ3 ffiffiffiffiffi
q0

p p0qμΩðp2ÞΩðq2Þðapaqe−ixλðqλþpλÞ þ a†pa
†
qeix

λðqλþpλÞ

− a†paqe−ix
λðqλ−pλÞ − apa

†
qe−ix

λð−qλþpλÞÞ ¼
Z

d3p
2ð2πÞ3 pμΩ2ðp2Þða†paq þ apa

†
qÞ; ðB6Þ
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where we have used the integral definition of δ3ðp − qÞ,
as well as the fact that the first two terms in the
summation are zero because they result from the inte-
gration of an odd function apa−p (similarly a†pa

†
−p) on a

symmetric interval.

2. Fermionic field theory

The Lagrangian for Dirac fields with a generic metric is
given by

L ¼ ffiffiffiffiffiffiffi
−g

p
ψ̄ðxÞðiγαeν

αðxÞ∂̃ν −mÞψðxÞ
¼ det½eðxÞ�ψ̄ðxÞðiγαeν

αðxÞ∂̃ν −mÞψðxÞ: ðB7Þ

Performing small variations of the action with respect to e,
one obtains

δL ¼ δdet½eðxÞ�ψ̄ðxÞðiγβeσ
βðxÞ∂̃σ −mÞψðxÞ

þ det½eðxÞ�ψ̄ðxÞiγαδeν
αðxÞ∂̃νψðxÞ

¼ − det½eðxÞ�eα
νδeν

αψ̄ðxÞðiγβeσ
βðxÞ∂̃σ −mÞψðxÞ

þ det½eðxÞ�ψ̄ðxÞiγαδeν
αðxÞ∂̃νψðxÞ: ðB8Þ

Notice that we have used (B3) together with
gμν ¼ eα

μηαβeβ
ν to compute the variation of the determi-

nant of the tetrad in the first term. Now, the energy-
momentum tensor can be written as

Tμν ¼
eμα

det½eðxÞ�
δL

δeν
αðxÞ

����
ea

b→δab

¼ −eρ
αηρμeα

νψ̄ðxÞðiγβeσ
βðxÞ∂̃σ −mÞψðxÞ þ ieμαψ̄ðxÞηαβγβ∂̃νψðxÞjea

b→δab

¼ −δρνηρμψ̄ðxÞðiγβeσ
βðxÞ∂̃σ −mÞψðxÞ þ ieβ

μψ̄ðxÞγβ∂̃νψðxÞjea
b→δab

¼ iψ̄ðxÞγμ∂̃νψðxÞ − ημνψ̄ðxÞðiγα∂̃α −mÞψðxÞ; ðB9Þ

because eα
μeμ

β ¼ δαβ. From here, the conserved quantities can be computed. If one replaces

ψðxÞ ¼
Z

d3p
ð2πÞ3 ffiffiffiffiffiffiffiffi

2p0

p
X
s¼1;2

ðap;suðsÞðpÞe−ixλpλ þ b†p;svðsÞðpÞeixλpλÞ;

ψ†ðxÞ ¼
Z

d3q
ð2πÞ3 ffiffiffiffiffiffiffi

2q0
p

X
r¼1;2

ðbq;rvðrÞ†ðqÞe−ixλqλ þ a†q;ruðrÞ†ðqÞeixλqλÞ ðB10Þ

in T0μ, one obtains

Pμ ¼
Z

d3xT0μ ¼ i
Z

d3xψ̄ðxÞγ0∂̃μψðxÞ ¼ i
Z

d3xψ†ðxÞ∂̃μψðxÞ

¼ −
Z

d3pd3qd3x
ð2πÞ6 ffiffiffiffiffiffiffiffiffiffiffiffi

4p0q0
p pμΩðp2Þ

X
r;s¼1;2

ð−bq;rap;svðrÞ†ðqÞuðsÞðpÞe−ixλðqλþpλÞ þ bq;rb
†
p;svðrÞ†ðqÞvðsÞðpÞe−ixλðqλ−pλÞ

− a†q;rap;suðrÞ†ðqÞuðsÞðpÞeixλðqλ−pλÞ þ a†q;rb
†
p;suðrÞ†ðqÞvðsÞðpÞeixλðqλþpλÞÞ

¼ −
Z

d3p
ð2πÞ32p0

pμΩðp2Þ
X

r;s¼1;2

ð−b−p;rap;svðrÞ†ð−pÞuðsÞðpÞ þ bp;rb
†
p;svðrÞ†ðpÞvðsÞðpÞ − a†p;rap;suðrÞ†ðpÞuðsÞðpÞ

þ a†−p;rb
†
p;suðrÞ†ð−pÞvðsÞðpÞÞ ¼

Z
d3p
ð2πÞ3 pμΩðp2Þ

X
s¼1;2

ðb†p;sbp;s þ a†p;sap;sÞ; ðB11Þ

where we have used the normal ordering for the creation and annihilation operators, and the integral definition of δ3ðp − qÞ,
as well as the following orthogonality and normalization rules [108]:

uðrÞ†ð−pÞvðsÞðpÞ ¼ vðrÞ†ð−pÞuðsÞðpÞ ¼ 0; vðrÞ†ðpÞvðsÞðpÞ ¼ uðrÞ†ðpÞuðsÞðpÞ ¼ 2p0δrs: ðB12Þ

Notice that once we have replaced the fields with their modes’ decomposition (B10), it can be easily checked that

−
Z

d3x η0μψ̄ðxÞðiγα∂̃α −mÞψðxÞ ¼ 0; ðB13Þ
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due to the deformed Dirac equations

ðΩðp2Þγαpα −mÞuðpÞ ¼ ðΩðp2Þγαpα þmÞvðpÞ ¼ 0;

with pα ¼ −i∂α: ðB14Þ

3. EM field theory

The Lagrangian for the EM interaction with a generic
metric is given by

L ¼ −
ffiffiffiffiffiffiffi
−g

p
4

F̃ρσF̃ρσ: ðB15Þ

Performing small variations of the action with respect to g,
one obtains

δL ¼ 1

8
gμνδgμνF̃ρσF̃ρσ −

1

4
F̃ρσF̃μνðδgμρgνσ þ gμρδgνσÞ

¼ 1

8
gμνδgμνF̃ρσF̃ρσ −

1

2
F̃μσF̃ντδgμνgστ: ðB16Þ

Consequently, the energy-momentum tensor can be
written as

Tμν ¼
2ffiffiffiffiffiffiffi−gp δL

δgμνðxÞ
����
gμν→ημν

¼
�
1

4
gμνF̃ρσF̃ρσ − F̃μσF̃ντgστ

	����
gμν→ημν

¼ 1

4
ημνF̃ρσF̃ρσ þ F̃μρF̃ρ

ν: ðB17Þ
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